In this paper, we present non-Markovian availability models for capturing the dynamics of system behavior of an operational software system that undergoes aperiodic time-based software rejuvenation and checkpointing. Two availability models with rejuvenation are considered taking account of the procedure after the completion of rollback recovery operation. We further proceed to investigate whether there exists the optimal rejuvenation schedule that maximizes the steady-state system availability, which is derived by means of the phase expansion technique, since the resulting models are not the trivial stochastic models such as semi-Markov process and Markov regenerative process, so that it is hard to solve them by using the common approaches like Laplace-Stieltjes transform and embedded Markov chain techniques. The numerical experiments are conducted to determine the optimal rejuvenation trigger timing maximizing the steadystate system availability for each availability model, and to compare both two models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.