Piezoelectric actuators based on bridge displacement amplifying mechanisms are widely used in precision driving and positioning fields. The classical bridge mechanism relies on structural flexibility to realize the return stroke, which leads to the low positioning accuracy of the actuator. In this paper, a series bridge mechanism is proposed to realize a bidirectional active drive; the return stroke is driven by a piezoelectric stack rather than by the flexibility of the structure. By analyzing the parameter sensitivity of the bridge mechanism, the series actuation of the bridge mechanism is optimized and the static and dynamic solutions are carried out by using the finite element method. Compared with the hysteresis loop of the piezoelectric stack, the displacement curve of the proposed actuator is symmetric, and the maximum nonlinear error is improved. The experimental results show that the maximum driving stroke of the actuator is 129.41 μm, and the maximum nonlinear error is 5.48%.
Piezoelectric actuators with a flexible displacement amplification structure are widely used in the fields of precision driving and positioning. The displacement curve of conventional piezoelectric actuators is asymmetrical and non-linear, which leads to large non-linear errors and reduced positioning accuracy of these piezoelectric actuators. In this paper, a bidirectional active drive piezoelectric actuator is proposed, which suppresses the hysteresis phenomenon to a certain extent and reduces the non-linear error. Based on the deformation theory of the beam, a theoretical model of the rhombus mechanism was established, and the key parameters affecting the drive performance were analyzed. Then, the static and dynamic characteristics of series piezoelectric actuators were analyzed by the finite element method. A prototype was manufactured and the output performance was tested. The results show that the actuator can achieve a bidirectional symmetric output of amplification displacement, with a maximum value of 91.45 μm and a resolution of 35 nm. In addition, compared with the hysteresis loop of the piezoelectric stack, the nonlinear error is reduced by 62.94%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.