A contour integral method is proposed to solve nonlinear eigenvalue problems numerically. The target equation is F (λ)x = 0, where the matrix F (λ) is an analytic matrix function of λ. The method can extract only the eigenvalues λ in a domain defined by the integral path, by reducing the original problem to a linear eigenvalue problem that has identical eigenvalues in the domain. Theoretical aspects of the method are discussed, and we illustrate how to apply of the method with some numerical examples.
We propose a numerical method using contour integral to solve polynomial eigenvalue problems (PEPs). The method finds eigenvalues contained in a certain domain which is defined by a surrounding integral path. By evaluating the contour integral numerically along the path, the method reduces the original PEP into a small generalized eigenvalue problem, which has the identical eigenvalues in the domain. Error analysis indicates that the error of the eigenvalues is not uniform: inner eigenvalues are less erroneous. Four numerical examples are presented, which confirm the theoretical predictions.
In this paper, we present perturbation results for eigenvalues of a matrix pencil of Hankel matrices for which the elements are given by complex moments. These results are extended to the case that matrices have a block Hankel structure. The influence of quadrature error on eigenvalues that lie inside a given integral path can be reduced by using Hankel matrices of an appropriate size. These results are useful for discussing the numerical behavior of root finding methods and eigenvalue solvers which make use of contour integrals. Results from some numerical experiments are consistent with the theoretical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.