using the WST-1 assay. Cell proliferation on A and B was especially rapid on the 18th day of culture. Therefore, we performed a significance test (Dunnett) for cell proliferation using A or B as the control group.
The present study demonstrates unidirectional cell migration using a novel 3D microfabricated scaffold, as revealed by the uneven sorting of cells into an area of 1 mm × 1 mm. To induce unidirectional cell migration, it is important to determine the optimal arrangement of 3D edges, and thus, the anisotropic periodic structures of micropatterns are adjusted appropriately. The cells put forth protrusions directionally along the sharp edges of these micropatterns, and migrated in the protruding direction. There are three advantages to this novel system. First, the range of applications is wide, because this system effectively induces unidirectional migration as long as 3D shapes of the scaffolds are maintained. Second, this system can contribute to the field of cell biology as a novel taxis assay. Third, this system is highly applicable to the development of medical devices. In the present report, unique 3D microfabricated scaffolds that provoked unidirectional migration of NIH3T3 cells are described. The 3D scaffolds could provoke cells to accumulate in a single target location, or could provoke a dissipated cell distribution. Because the shapes are very simple, they could be applied to the surfaces of various medical devices. Their utilization as a cell separation technology is also anticipated.
Objective
Compared to other stem cells, the multipotency of human adipose-derived mesenchymal stem cells (ASCs) is limited. Effective approaches that trigger or enhance lineage-specific transdifferentiation are highly envisaged in the improvement of ASCs-based cell therapies. Using Immunofluorescence assays and the secretion of cardiac troponin T (cTnT) protein, we studied the impact of two substrates: Hydroxyapatite (HAp)-coated nonwoven polyethylene (PET)/polypropylene (PP) fabric and glass surfaces, representing 3 dimensional (D) and 2 D environments respectively, on the induction of cardiomyocytes – a non-mesodermal cell type from ASCs for 1–5 weeks.
Results
ASCs were successfully isolated from human adipose tissue under cGMP conditions. Within 1–3 weeks, expression of cTnT in the induced 3D cultures was overall significantly higher (P < 0.021) than that in the induced 2D cultures or controls (P < 0.0009). Remarkably, after 3 weeks of culture, cTnT secretion in the induced 3D cultures gradually declined, nearly reaching levels observed in the 2D cultures. The results show that HAp-coated nonwoven PE/PP fabric could enhance lineage-specific differentiation of ASCs toward cardiac-like cells. However, the fabric might suppress growth of the transformed cells. These preliminary findings encourage further interest in validating the fabric’s potential in improving ASCs transdifferentiation.
In article number 2000113, Hiroshi Sunami and co‐workers demonstrate unidirectional cell migration using a novel three‐dimensional microfabricated scaffold. The three‐dimensional scaffolds could provoke cells to accumulate in a single target location or could provoke dissipated cell distribution. Because the shapes are very simple, the scaffolds could be applied to the surfaces of various medical devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.