Cyclic AMP-responsive element (CRE)-binding protein (CREB) is a transcription factor that plays an important role in numerous physiological events, such as cell proliferation, survival, tumorigenesis, glucose metabolism and memory, in a phosphorylation-dependent manner [1,2] Cyclic AMP responsive element (CRE)-binding protein (CREB) is known to activate transcription when its Ser133 is phosphorylated. Two independent investigations have suggested the presence of Ser133-independent activation. One study identified a kinase, salt-inducible kinase (SIK), which repressed CREB; the other isolated a novel CREB-specific coactivator, transducer of regulated CREB activity (TORC), which upregulated CREB activity. These two opposing signals are connected by the fact that SIK phosphorylates TORC and induces its nuclear export. Because LKB1 has been reported to be an upstream kinase of SIK, we used LKB1-defective HeLa cells to further elucidate TORC-dependent CREB activation. In the absence of LKB1, SIK was unable to phosphorylate TORC, which led to constitutive activation of CRE activity. Overexpression of LKB1 in HeLa cells improved the CRE-dependent transcription in a regulated manner. The inactivation of kinase cascades by 10 nm staurosporine in LKB1-positive HEK293 cells also induced unregulated, constitutively activated, CRE activity. Treatment with staurosporine completely inhibited SIK kinase activity without any significant effect on the phosphorylation level at the LKB1-phosphorylatable site in SIK or the activity of AMPK, another target of LKB1. Constitutive activation of CREB in LKB1-defective cells or in staurosporine-treated cells was not accompanied by CREB phosphorylation at Ser133. The results suggest that LKB1 and its downstream SIK play an important role in silencing CREB activity via the phosphorylation of TORC, and such silencing may be indispensable for the regulated activation of CREB.Abbreviations A-loop, activation loop; AMPK, AMP-activated protein kinase; bZIP, basic leucine zipper domain; CRE, cAMP-response element; CREB, CRE-binding protein; DAPI, 4¢,6-diamidino-2-phenylindole; GFP, green fluorescent protein; GST, glutathione-S-transferase; HA, hemagglutinin; KID, kinase-inducible domain; moi, multiplicities of infection; PKA, protein kinase A; RT, reverse transcription; SIK, salt-inducible kinase; TORC, transducer of regulated CREB activity.
Salt-inducible kinase (SIK), first cloned from the adrenal glands of rats fed a high salt diet, is a serine/threonine protein kinase belonging to an AMP-activated protein kinase family. Induced in Y1 cells at an early stage of ACTH stimulation, it regulated the initial steps of steroidogenesis. Here we report the identification of its isoform SIK2. When a green fluorescent protein-fused SIK2 was expressed in 3T3-L1 preadipocytes, it was mostly present in the cytoplasm. When coexpressed in cAMP-responsive element-reporter assay systems, SIK2 could repress the cAMP-responsive element-dependent transcription, although the degree of repression seemed weaker than that by SIK1. SIK2 was specifically expressed in adipose tissues. When 3T3-L1 cells were treated with the adipose differentiation mixture, SIK2 mRNA was induced within 1 h, the time of induction almost coinciding with that of c/EBP mRNA. Coexpressed with human insulin receptor substrate-1 (IRS-1) in COS cells, SIK2 could phosphorylate Ser 794 of human IRS-1. Adenovirus-mediated overexpression of SIK2 in adipocytes elevated the level of phosphorylation at Ser 789 , the mouse equivalent of human Ser 794 . Moreover, the activity and content of SIK2 were elevated in white adipose tissues of db/db diabetic mice. These results suggest that highly expressed SIK2 in insulin-stimulated adipocytes phosphorylates Ser 794 of IRS-1 and, as a result, might modulate the efficiency of insulin signal transduction, eventually causing the insulin resistance in diabetic animals.The lipid metabolism in adipose tissues is under the control of two hormonal signaling pathways; insulin stimulates glucose uptake and lipogenesis, whereas cAMP, generated by exogenous stimuli like adrenalin and glucagon, stimulates lipolysis. If the balance between the two signaling systems becomes lost and the adipose tissues are exposed to hyperinsulinemia for a prolonged time, they gradually become resistant to insulin stimulation (1, 2). The insulin resistance occurring in tissues involved in biological fuel metabolism, such as adipose tissues, liver, and skeletal muscles, would finally cause disorders in energy metabolism of the whole body, such as obesity and type 2 diabetes (3, 4). Insulin receptor substrate (IRS) 1 proteins are key molecules of the insulin-signaling cascade (5); they are phosphorylated on tyrosine residues by the action of insulindependently activated insulin receptor kinase, and the tyrosine-phosphorylated IRS proteins trigger further intracellular cascades. Several investigators recently reported (6, 7) that IRS proteins, under certain non-physiological conditions, were phosphorylated on serine residues. The serine phosphorylation of IRS proteins would modulate the efficiency of the insulinsignaling cascade (8, 9) and eventually render the animals resistant to insulin stimulation (10, 11). Molecular identification of several protein kinases responsible for the serine phosphorylation of IRS proteins has been reported (12-24).Salt-inducible kinase (SIK) was first cloned from ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.