Salt-inducible kinase (SIK), first cloned from the adrenal glands of rats fed a high salt diet, is a serine/threonine protein kinase belonging to an AMP-activated protein kinase family. Induced in Y1 cells at an early stage of ACTH stimulation, it regulated the initial steps of steroidogenesis. Here we report the identification of its isoform SIK2. When a green fluorescent protein-fused SIK2 was expressed in 3T3-L1 preadipocytes, it was mostly present in the cytoplasm. When coexpressed in cAMP-responsive element-reporter assay systems, SIK2 could repress the cAMP-responsive element-dependent transcription, although the degree of repression seemed weaker than that by SIK1. SIK2 was specifically expressed in adipose tissues. When 3T3-L1 cells were treated with the adipose differentiation mixture, SIK2 mRNA was induced within 1 h, the time of induction almost coinciding with that of c/EBP mRNA. Coexpressed with human insulin receptor substrate-1 (IRS-1) in COS cells, SIK2 could phosphorylate Ser 794 of human IRS-1. Adenovirus-mediated overexpression of SIK2 in adipocytes elevated the level of phosphorylation at Ser 789 , the mouse equivalent of human Ser 794 . Moreover, the activity and content of SIK2 were elevated in white adipose tissues of db/db diabetic mice. These results suggest that highly expressed SIK2 in insulin-stimulated adipocytes phosphorylates Ser 794 of IRS-1 and, as a result, might modulate the efficiency of insulin signal transduction, eventually causing the insulin resistance in diabetic animals.The lipid metabolism in adipose tissues is under the control of two hormonal signaling pathways; insulin stimulates glucose uptake and lipogenesis, whereas cAMP, generated by exogenous stimuli like adrenalin and glucagon, stimulates lipolysis. If the balance between the two signaling systems becomes lost and the adipose tissues are exposed to hyperinsulinemia for a prolonged time, they gradually become resistant to insulin stimulation (1, 2). The insulin resistance occurring in tissues involved in biological fuel metabolism, such as adipose tissues, liver, and skeletal muscles, would finally cause disorders in energy metabolism of the whole body, such as obesity and type 2 diabetes (3, 4). Insulin receptor substrate (IRS) 1 proteins are key molecules of the insulin-signaling cascade (5); they are phosphorylated on tyrosine residues by the action of insulindependently activated insulin receptor kinase, and the tyrosine-phosphorylated IRS proteins trigger further intracellular cascades. Several investigators recently reported (6, 7) that IRS proteins, under certain non-physiological conditions, were phosphorylated on serine residues. The serine phosphorylation of IRS proteins would modulate the efficiency of the insulinsignaling cascade (8, 9) and eventually render the animals resistant to insulin stimulation (10, 11). Molecular identification of several protein kinases responsible for the serine phosphorylation of IRS proteins has been reported (12-24).Salt-inducible kinase (SIK) was first cloned from ...
AMP-activated protein kinase (AMPK) activation reportedly suppresses transcriptional activity of the cAMP-responsive element (CRE) in the phosphoenolpyruvate carboxykinase C (PEPCK-C) promoter and reduces hepatic PEPCK-C expression. Although a previous study found TORC2 phosphorylation to be involved in the suppression of AMPK-mediated CRE transcriptional activity, we herein present evidence that glycogen synthase kinase 3 (GSK3) phosphorylation induced by AMPK also plays an important role. We initially found that injecting fasted mice with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) markedly increased Ser-9 phosphorylation of hepatic GSK3 within 15 min. Stimulation with AICAR or the GSK3 inhibitor SB-415286 strongly inhibited CRE-containing promoter activity in HepG2 cells. Using the Gal4-based transactivation assay system, the transcriptional activity of cAMP-response element-binding protein (CREB) was suppressed by both AICAR and SB415286, whereas that of TORC2 was repressed significantly by AICAR but very slightly by SB415286. These results show inactivation of GSK3 to directly inhibit CREB but not TORC2. Importantly, the AICAR-induced suppression of PEPCK-C expression was shown to be blunted by overexpression of GSK3(S9G) but not wild-type GSK3. In addition, AICAR stimulation decreased, whereas Compound C (AMPK inhibitor) increased CREB phosphorylation (Ser-129) in HepG2 cells. The time-courses of decreased CREB phosphorylation (Ser-129) and increased GSK3 phosphorylation were very similar. Furthermore, AMPK-mediated GSK3 phosphorylation was inhibited by an Akt-specific inhibitor in HepG2 cells, suggesting involvement of the Akt pathway. In summary, phosphorylation (Ser-9) of GSK3 is very likely to be critical for AMPK-mediated PEPCK-C gene suppression. Reduced CREB phosphorylation (Ser-129) associated with inactivation of GSK3 by Ser-9 phosphorylation may be the major mechanism underlying PEPCK-C gene suppression by AMPK-activating agents such as biguanide.
Protein kinase B (PKB)/Akt reportedly plays a role in the survival and/or proliferation of cells. We identified a novel protein, which binds to PKB, using a yeast twohybrid screening system. This association was demonstrated not only in vivo by overexpressing both proteins or by coimmunoprecipitation of the endogenous proteins, but also in vitro using glutathione S-transferase fusion proteins. Importantly, this protein specifically associates with the C terminus of PKB but not with other AGC kinases and enhances PKB phosphorylation and kinase activation without growth factor stimulation. Thus, we termed this Akt-specific binding protein APE (Akt-phosphorylation enhancer). Since APEinduced phosphorylation of PKB did not occur in cells treated with wortmannin or LY294002, APE itself is not a kinase but seems to enhance or prolong the phosphoinositide 3-kinase-dependent phosphorylation of PKB. In cells in which APE was suppressed by small interfering RNA, DNA synthesis was significantly reduced with suppression of PKB phosphorylation, suggesting a synergistic role of APE in PKB-induced proliferation. On the other hand, in cells overexpressing both PKB and APE, despite markedly increased basal phosphorylation of PKB, both DNA rereplication and subsequent Chk2 phosphorylation and apoptosis were seen, suggesting the involvement of APE in the regulation of cell cycling replication licensing. Taking these observations together, APE appears to be a novel regulator of PKB phosphorylation. Furthermore, the interaction between APE and PKB, possibly dependent on the expression levels of both proteins, may be a novel molecular mechanism leading to proliferation and/or apoptosis.The serine/threonine protein kinase PKB 1 (also called Akt) is thought to be a key mediator of signal transduction. Upon growth factor stimulation, a family of lipid kinases known as class 1 phosphoinositide 3-kinases (PI 3-kinases) is recruited to the plasma membrane. PI 3-kinases phosphorylate phosphatidylinositol 4,5-bisphosphate at the D-3 position of the inositol ring, converting it to phosphatidylinositol 3,4,5-trisphosphate. Following the activation of PI 3-kinase, PKBs are recruited to the plasma membrane through direct contact of the pleckstrin homology (PH) domain with phosphatidylinositol 3,4,5-trisphosphate and are phosphorylated at Thr 308 by PDK1 and at Ser 473 by PDK2, a kinase of which the molecular structure has not yet been identified (1, 2). AGC kinases other than PKB are also known to be regulated by PI 3-kinase, and PKB acts downstream from PI 3-kinase to regulate numerous biological processes, such as proliferation, antiapoptosis, cell growth, and glucose metabolism (1, 2).PKB has a wide range of substrates, including GSK-3, FKHR (FoxO1), FKHR-L1 (FoxO3), AFX (FoxO4), and eNOS, all of which have the consensus motif RXRXX(S/T) (3, 4). Protein kinases do not generally form stable complexes with their substrates, although PKB has been shown to exist in a stable complex with several of its substrates including MDM2, p21 Cip1 /WAF1, an...
The cAMP responsive element-binding protein (CREB) functions in a broad array of biological and pathophysiological processes. We found that saltinducible kinase 2 (SIK2) was abundantly expressed in neurons and suppressed CREB-mediated gene expression after oxygen-glucose deprivation (OGD). OGD induced the degradation of SIK2 protein concomitantly with the dephosphorylation of the CREB-specific coactivator transducer of regulated CREB activity 1 (TORC1), resulting in the activation of CREB and its downstream gene targets. Ca 2+ / calmodulin-dependent protein kinase I/IV are capable of phosphorylating SIK2 at Thr484, resulting in SIK2 degradation in cortical neurons. Neuronal survival after OGD was significantly increased in neurons isolated from sik2 À/À mice, and ischemic neuronal injury was significantly reduced in the brains of sik2 À/À mice subjected to transient focal ischemia. These findings suggest that SIK2 plays critical roles in neuronal survival, is modulated by CaMK I/IV, and regulates CREB via TORC1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.