The programmed death-1 (PD-1) costimulatory pathway has been demonstrated to play a role in the regulation of immune responses and peripheral tolerance. We investigated the role of this pathway in establishing an immune privilege status of corneal allografts in mice. B7-H1, but not B7-DC or PD-1, was expressed constitutively in the eye, i.e., cornea, iris-ciliary body, and retina. After corneal allografting, PD-1+CD4+ T cells infiltrated and adhered with B7-H1+ corneal endothelium. Blockade of PD-1 or B7-H1, but not B7-DC, led to accelerated corneal allograft rejection. In B7-H1-expressing corneal allografts, apoptosis of the infiltrating PD-1+CD4+ or CD8+ T cells was observed, after which there was allograft acceptance. In contrast, B7-H1 blockade suppressed apoptosis of infiltrating PD-1+ T cells, which led to allograft rejection. In vitro, destruction of corneal endothelial cells by alloreactive T cells was enhanced when the cornea was pretreated with anti-B7-H1 Ab. This is the first demonstration that the constitutive expression of B7-H1 plays a critical role in corneal allograft survival. B7-H1 expressed on corneal endothelial cells maintains long-term acceptance of the corneal allografts by inducing apoptosis of effector T cells within the cornea.
Multipotent, self-renewing stem and progenitor cells isolated from the mammalian central nervous system (CNS) have been shown to survive as allografts following transplantation to sites throughout the neuraxis. However, studies of this type shed little light upon the immunologic properties of the cells themselves, primarily because little is learned about the intrinsic immunogenic properties of a cell when it is grafted into an immune-privileged site. We have therefore investigated the immunogenic and antigenic properties of CNS progenitor cells by grafting them into a conventional (i.e., non-immune-privileged) site, namely, beneath the kidney capsule. Our results indicate that allogeneic CNS progenitor cells survive at least 4 weeks in a conventional site, during which time they neither sensitize their hosts nor express detectable levels of major histocompatibility complex (MHC) class I or II. These in vivo data are in accord with flow cytometric results showing that CNS progenitor cells do not express MHC class I or class II, either at baseline or upon differentiation in 10% serum. Exposure to interferon gamma, however, reversibly upregulates expression of these key transplantation antigens. Together, these results reveal CNS progenitor cells to possess inherent immune privilege. Since CNS progenitor cell allografts were rejected beneath the kidney capsule following specific sensitization of the host, CNS progenitor cells were able to display alloantigens, albeit not in an immunogenic form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.