Receptor tyrosine kinases Flt-1 and Flk-1͞ KDR, and their ligand, the vascular endothelial growth factor (VEGF), were shown to be essential for angiogenesis in the mouse embryo by gene targeting. Flk-1͞KDR null mutant mice exhibited impaired endothelial and hematopoietic cell development. On the other hand, Flt-1 null mutation resulted in early embryonic death at embryonic day 8.5, showing disorganization of blood vessels, such as overgrowth of endothelial cells. Flt-1 differs from Flk-1 in that it displays a higher affinity for VEGF but lower kinase activity, suggesting the importance of its extracellular domain. To examine the biological role of Flt-1 in embryonic development and vascular formation, we deleted the kinase domain without affecting the ligand binding region. Flt-1 tyrosine kinase-deficient homozygous mice ( flt-1 TK؊/؊ ) developed normal vessels and survived. However, VEGF-induced macrophage migration was strongly suppressed in flt-1 TK؊/؊ mice. These results indicate that Flt-1 without tyrosine kinase domain is sufficient to allow embryonic development with normal angiogenesis, and that a receptor tyrosine kinase plays a main biological role as a ligand-binding molecule.
Hepatocyte growth factor/scatter factor (HGF/SF) functions as a mitogen, motogen and morphogen for a variety of cultured cells. The genes for HGF/SF and its receptor (the c-met proto-oncogene product) are expressed in many tissues during the embryonic periods and in the adult. HGF/SF is thought to mediate a signal exchange between the mesenchyme and epithelia during mouse development. To examine the physiological role of HGF/SF, we generated mutant mice with a targeted disruption of the HGF/SF gene. Here we report that homozygous mutant embryos have severely impaired placentas with markedly reduced numbers of labyrinthine trophoblast cells, and die before birth. The growth of trophoblast cells was stimulated by HGF/SF in vitro, and the HGF/SF activity was released by allantois in primary culture of normal but not mutant embryos. These findings suggest that HGF/SF is an essential mediator of allantoic mesenchyme-trophoblastic epithelia interaction required for placental organogenesis.
The tau gene encodes a protein (Tau) that is a major neuronal microtubule-associated protein localized mostly in axons. It has microtubule-binding and tubulin-polymerizing activity in vitro and is thought to make short crossbridges between axonal microtubules. Further, tau-transfected non-neuronal cells extend long axon-like processes in which microtubule bundles resembling those in axons are formed. In contrast, tau antisense oligonucleotides selectively suppress axonal elongation in cultured neurons. Thus tau is thought to be essential for neuronal cell morphogenesis, especially axonal elongation and maintenance. To test this hypothesis, we used gene targeting to produce mice lacking the tau gene. We show that the nervous system of tau-deficient mice appears to be normal immunohistologically. Furthermore, axonal elongation is not affected in cultured neurons. But in some small-calibre axons, microtubule stability is decreased and microtubule organization is significantly changed. We observed an increase in microtubule-associated protein 1A which may compensate for the functions of tau in large-calibre axons. Our results argue against the suggested role of tau in axonal elongation but confirm that it is crucial in the stabilization and organization of axonal microtubules in a certain type of axon.
Contraction of skeletal muscle is triggered by the release of Ca2+ from the sarcoplasmic reticulum (SR) after depolarization of transverse tubules. The ryanodine receptor exists as a 'foot' protein in the junctional gap between the sarcoplasmic reticulum and the transverse tubule in skeletal muscle, and is proposed to function as a calcium-release channel during excitation-contraction (E-C) coupling. Previous complementary DNA-cloning studies have defined three distinct subtypes of the ryanodine receptor in mammalian tissues, namely skeletal muscle, cardiac and brain types. We report here mice with a targeted mutation in the skeletal muscle ryanodine receptor gene. Mice homozygous for the mutation die perinatally with gross abnormalities of the skeletal muscle. The contractile response to electrical stimulation under physiological conditions is totally abolished in the mutant muscle, although ryanodine receptors other than the skeletal-muscle type seem to exist because the response to caffeine is retained. Our results show that the skeletal muscle ryanodine receptor is essential for both muscular maturation and E-C coupling, and also imply that the function of the skeletal muscle ryanodine receptor during E-C coupling cannot be substituted by other subtypes of the receptor.
We report the generation and characterization of transgenic mouse and zebrafish expressing green fluorescent protein (GFP) specifically in vascular endothelial cells in a relatively uniform fashion. These reporter lines exhibit fluorescent vessels in developing embryos and throughout adulthood, allowing visualization of the general vascular patterns with single cell resolution. Furthermore, we show the ability to purify endothelial cells from whole embryos and adult organs by a single step fluorescence activated cell sorting. We expect that these transgenic reporters will be useful tools for imaging vascular morphogenesis, global gene expression profile analysis of endothelial cells, and high throughput screening for vascular mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.