Recovery processes of photosynthetic systems during rewetting were studied in detail in a terrestrial, highly drought-tolerant cyanobacterium, Nostoc commune. With absorption of water, the weight of N. commune colony increased in three phases with half-increase times of about 1 min, 2 h and 9 h. Fluorescence intensities of phycobiliproteins and photosystem (PS) I complexes were recovered almost completely within 1 min, suggesting that their functional forms were restored very quickly. Energy transfer from allophycocyanin to the core-membrane linker peptide (L(CM)) was recovered within 1 min, but not that from L(CM) to PSII. PSI activity and cyclic electron flow around PSI recovered within 2 min, while the PSII activity recovered in two phases after a time lag of about 5 min, with half times of about 20 min and 2 h. Photosynthetic CO(2) fixation was restored almost in parallel with the first recovery phase of the PSII reaction center activity. Although the amount of absorbed water became more than 20 times the initial dry weight of the N. commune colony in the presence of sufficient water, about twice the initial dry weight was enough for recovery and maintenance of the PSII activity.
Changes in photosynthetic activities under hypertonic conditions were studied in a terrestrial, highly desiccation-tolerant cyanobacterium, Nostoc commune, and in some desiccation-sensitive cyanobacteria. The amounts of water sustained in the colony matrix outside the N. commune cells and the cellular solute concentration were estimated by measuring the water potential, and the solute concentration was supposed to correspond to around 0.22 M sorbitol. Incubation of the colonies in 0.8 M sorbitol solution inhibited the energy transfer from the phycobilisome (PBS) anchor to PSII core complexes. At higher sorbitol concentrations, light energy absorbed by PSI, PSII, and PBS was dissipated to heat. PSI and cyclic electron flow around PSI was also deactivated by hypertonic treatment. Fv/Fm and (Fm'-F)/Fm' values started to decrease at 0.6 and 0.3 M sorbitol and reached zero at 1.0 and 0.8 M, respectively. Decreases in these two fluorescence parameters corresponded to the decreases in PSII fluorescence (F695) and photosynthetic CO2 fixation, respectively. The intensity of delayed light emission started to decrease at 1.0 M sorbitol and became negligible at 4.0 M. Comparing these changes in N. commune with those in desiccation-sensitive species, we found that N. commune cells actively deactivates photosynthetic systems on sensing water loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.