A catalytic system consisting of sodium tungstate and methyltrioctylammonium hydrogensulfate effects oxidation of simple secondary alcohols to ketones using 3—30% H2O2 without any organic solvents. The oxidation can be conducted under entirely halide-free, mildly acidic conditions. A combination of tungstic acid and an appropriate quaternary ammonium salt also effects the alcohol dehydrogenation. The organic/aqueous biphasic reaction allows easy product/catalyst separation. The turnover number, defined as mols of product per mol of catalyst, approaches 77700 (2-octanol) or 179000 (1-phenylethanol), two orders of magnitude higher than any previously reported. Ester, alkyl and t-butyldimethylsilyl ether, epoxy, carbonyl, N-alkyl carboxamide, and nitrile groups are tolerated under the reaction conditions. Secondary alcohols are preferentially oxidized over terminal olefins. Primary alkanols are oxidized directly to carboxylic acids in a moderate to high yield. Benzylic alcohols are selectively oxidized to benzaldehydes or benzoic acids under suitable conditions. This method is high-yielding, clean, safe, operationally simple, and cost-effective, and therefore suitable for practical organic synthesis. The mechanistic origin of the catalytic efficiency is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.