In multiple sclerosis, activated CD4(+) T cells initiate an immune response in the brain and spinal cord, resulting in demyelination, degeneration and progressive paralysis. Repulsive guidance molecule-a (RGMa) is an axon guidance molecule that has a role in the visual system and in neural tube closure. Our study shows that RGMa is expressed in bone marrow-derived dendritic cells (BMDCs) and that CD4(+) T cells express neogenin, a receptor for RGMa. Binding of RGMa to CD4(+) T cells led to activation of the small GTPase Rap1 and increased adhesion of T cells to intracellular adhesion molecule-1 (ICAM-1). Neutralizing antibodies to RGMa attenuated clinical symptoms of mouse myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) and reduced invasion of inflammatory cells into the CNS. Silencing of RGMa in MOG-pulsed BMDCs reduced their capacity to induce EAE following adoptive transfer to naive C57BL/6 mice. CD4(+) T cells isolated from mice treated with an RGMa-specific antibody showed diminished proliferative responses and reduced interferon-γ (IFN-γ), interleukin-2 (IL-2), IL-4 and IL-17 secretion. Incubation of PBMCs from patients with multiple sclerosis with an RGMa-specific antibody reduced proliferative responses and pro-inflammatory cytokine expression. These results demonstrate that an RGMa-specific antibody suppresses T cell responses, and suggest that RGMa could be a promising molecular target for the treatment of multiple sclerosis.
Bone morphogenetic proteins (BMPs) are multifunctional growth factors that belong to the transforming growth factor‐β superfamily. BMPs regulate several crucial aspects of embryonic development and organogenesis. The reemergence of BMPs in the injured adult CNS suggests their involvement in the pathogenesis of the lesion. Here, we demonstrate that BMPs are potent inhibitors of axonal regeneration in the adult spinal cord. The expression of BMP‐2/4 is elevated in oligodendrocytes and astrocytes around the injury site following spinal cord contusion. Intrathecal administration of noggin – a soluble BMP antagonist—leads to enhanced locomotor activity and reveals significant regrowth of the corticospinal tract after spinal cord contusion. Thus, BMPs play a role in inhibiting axonal regeneration and limiting functional recovery following injury to the CNS.
In injured adult neurons, the process of axonal regrowth and reestablishment of the neuronal function have to be activated. We assessed in this study whether RhoA, a key regulator of neurite elongation, is activated after injury to the peripheral nervous system. RhoA is activated in motoneurons but not in Schwann cells after mouse sciatic nerve injury. To examine whether the activation of RhoA and its effector, Rho-kinase, retards axon regeneration of injured motoneurons, we employed a Rho-kinase inhibitor, fasudil. Amplitudes of distally evoked compound muscle action potentials are increased significantly faster after axonal injury in mice treated with fasudil compared with controls. Histological analysis shows that fasudil treatment increases the number of regenerating axons with large diameter, suggesting that axon maturation is facilitated by Rho-kinase inhibition. In addition, fasudil does not suppress the myelination of regenerating axons. These findings suggest that RhoA/Rho-kinase may be a practical molecular target to enhance axonal regeneration in human peripheral neuropathies.
Although myelin‐associated neurite outgrowth inhibitors express their effects through RhoA/Rho‐kinase, the downstream targets of Rho‐kinase remain unknown. We examined the involvement of myosin II, which is one of the downstream targets of Rho‐kinase, by using blebbistatin – a specific myosin II inhibitor – and small interfering RNA targeting two myosin II isoforms, namely, MIIA and MIIB. We found that neurite outgrowth inhibition by repulsive guidance molecule (RGMa) was mediated via myosin II, particularly MIIA, in cerebellar granule neurons. RGMa induced myosin light chain (MLC) phosphorylation by a Rho‐kinase‐dependent mechanism. After spinal cord injury in rats, phosphorylated MLC in axons around the lesion site was up‐regulated, and this effect depends on Rho‐kinase activity. Further, RGMa‐induced F‐actin reduction in growth cones and growth cone collapse were mediated by MIIA. We conclude that Rho‐kinase‐dependent activation of MIIA via MLC phosphorylation induces F‐actin reduction and growth cone collapse and the subsequent neurite retraction/outgrowth inhibition triggered by RGMa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.