Infections caused by Pseudomonas aeruginosa often are hard to treat; inappropriate chemotherapy readily selects multidrug-resistant P. aeruginosa. This organism can be exposed to a wide range of concentrations of antimicrobials during treatment; learning more about the responses of P. aeruginosa to antimicrobials is therefore important. We review here responses of the bacterium P. aeruginosa upon exposure to antimicrobials at levels below the inhibitory concentration. Carbapenems (e.g., imipenem) have been shown to induce the formation of thicker and more robust biofilms, while fluoroquinolones (e.g., ciprofloxacin) and aminoglycosides (e.g., tobramycin) have been shown to induce biofilm formation. Ciprofloxacin also has been demonstrated to enhance the frequency of mutation to carbapenem resistance. Conversely, although macrolides (e.g., azithromycin) typically are not effective against P. aeruginosa because of the pseudomonal outer-membrane impermeability and efflux, macrolides do lead to a reduction in virulence factor production. Similarly, tetracycline is not very effective against this organism, but is known to induce the type-III secretion system and consequently enhance cytotoxicity of P. aeruginosa in vivo. Of special note are the effects of antibacterials and disinfectants on pseudomonal efflux systems. Sub-inhibitory concentrations of protein synthesis inhibitors (aminoglycosides, tetracycline, chloramphenicol, etc.) induce the MexXY multidrug efflux system. This response is known to be mediated by interference with the translation of the leader peptide PA5471.1, with consequent effects on expression of the PA5471 gene product. Additionally, induction of the MexCD-OprJ multidrug efflux system is observed upon exposure to sub-inhibitory concentrations of disinfectants such as chlorhexidine and benzalkonium. This response is known to be dependent upon the AlgU stress response factor. Altogether, these biological responses of P. aeruginosa provide useful clues for the improvement and optimization of chemotherapy in order to appropriately treat pseudomonal infections while minimizing the emergence of resistance.
Helicobacter cinaedi was first isolated from rectal cultures from homosexual men in 1984. In the 1980s to mid 1990s, the microorganism was mainly isolated from samples from homosexual men or immunocompromised patients; however, during the last two decades, H. cinaedi has been isolated from immunocompromised and from immunocompetent individuals worldwide. In Japan, the isolation of this microorganism was first reported in 2003. Since then, many cases have been reported in hospitals across the country. Despite many reports, the etiological properties and pathogenicity of H. cinaedi remain elusive; however, we are increasingly able to recognize some of the features and the clinical relevance of infection. In particular, a long incubation period is essential for detection in an automatic blood culture system and many of the recent isolates are resistant to both macrolides and quinolones. Furthermore, there is an association between infection and severe or chronic illnesses, such as meningitis or arteriosclerosis, in addition to mild diseases such as fever, abdominal pain, gastroenteritis, proctitis, diarrhea, erysipelas, cellulitis, arthritis, and bacteremia. In this review, we introduce the current knowledge and our latest findings relating to H. cinaedi.
Anti-pseudomonas aminoglycosides, such as amikacin and tobramycin, are used in the treatment of Pseudomonas aeruginosa infections. However, their use is linked to the development of resistance. During the last decade, the MexXY multidrug efflux system has been comprehensively studied, and numerous reports of laboratory and clinical isolates have been published. This system has been increasingly recognized as one of the primary determinants of aminoglycoside resistance in P. aeruginosa. In P. aeruginosa cystic fibrosis isolates, upregulation of the pump is considered the most common mechanism of aminoglycoside resistance. Non-fermentative Gram-negative pathogens possessing very close MexXY orthologs such as Achromobacter xylosoxidans and various Burkholderia species (e.g., Burkholderia pseudomallei and B. cepacia complexes), but not B. gladioli, are intrinsically resistant to aminoglycosides. Here, we summarize the properties (e.g., discovery, mechanism, gene expression, clinical significance) of the P. aeruginosa MexXY pump and other aminoglycoside efflux pumps such as AcrD of Escherichia coli, AmrAB-OprA of B. pseudomallei, and AdeABC of Acinetobacter baumannii. MexXY inducibility of the PA5471 gene product, which is dependent on ribosome inhibition or oxidative stress, is noteworthy. Moreover, the discovery of the cognate outer membrane component (OprA) of MexXY in the multidrug-resistant clinical isolate PA7, serotype O12 deserves special attention.
The multiresistant taxonomic outlier Pseudomonas aeruginosa PA7 possesses the conserved efflux genes, mexXY; however these are linked to a unique gene encoding an outer membrane channel, dubbed oprA, that is absent in most P. aeruginosa strains. Using genetic knockouts and single copy chromosomal complementation, we showed that aminoglycoside resistance in PA7 is mediated in part by the MexXY-OprA pump, and intriguingly that MexXY in this strain can utilize either the OprA or OprM outer membrane channel, linked to the mexAB efflux genes. We also identified a small portion of the oprA gene immediately downstream of the mexY gene in PAO1, suggesting that non-PA7 P. aeruginosa strains might have possessed, but lost, the intact mexXYoprA efflux pump locus. Consistent with this, most of a panel of serotype strains possessed the truncated oprA but the serotype O12 isolate had an intact mexXY-oprA locus, similar to PA7 and the related strain DSM 1128. We also showed that the mexZ repressor gene upstream of mexXYoprA in PA7 is mutated, leading to overexpression of mexXY-oprA, using sequencing, homologous replacement and real-time quantitative reverse transcriptase PCR. Finally we assessed the contribution of MexXY and aminoglycoside modifying enzymes AAC together to resistance in PA7 and the AAC(69)-Iae-mediated amikacin-resistant clinical isolate IMCJ2.S1, concluding that the effect of the modifying enzymes is enhanced by functional efflux, especially in the presence of divalent cations, to develop high-level aminoglycoside resistance in P. aeruginosa. INTRODUCTIONPseudomonas aeruginosa is a common nosocomial pathogen that causes a broad range of infections with a high mortality rate (Mahar et al., 2010; Iida et al., 2010;Lambert et al., 2011). A major factor in its prominence as a pathogen is, in part, its intrinsic resistance to a number of antibacterial agents (Poole et al., 1993;Hancock, 1998;Poole, 2002) and, particularly, the development of increased multidrug resistance in healthcare settings (Giamarellos-Bourboulis et al., 2006;Kirikae et al., 2008;Kallen et al., 2010;Keen et al., 2010). This organism readily acquires resistance via chromosomal mutations (e.g. overexpression of the efflux pump) and lateral gene transfer (e.g. acquisition of metallob-lactamase) (Lister et al., 2009;Poole, 2011). The emergence and spread of multidrug-, extensive drug-and pan-drug-resistant P. aeruginosa infections are very serious and of great concern, as few agents are effective against these organisms. In addition, antibiotic-resistant Gram-negative bacteria, including P. aeruginosa, increase the hospital costs and length of stay associated with healthcare-associated infections (Mauldin et al., 2010).Aminoglycosides such as amikacin, gentamicin and tobramycin are a vital component of antipseudomonal chemotherapy for a variety of infections, particularly pulmonary infections in cystic fibrosis (CF) patients (Poole, 2005(Poole, , 2011. Aminoglycoside resistance in P. aeruginosa has often arisen via acquired aminoglycoside-modifyi...
bHelicobacter cinaedi is the most frequently reported enterohepatic Helicobacter species isolated from humans. Earlier research suggested that certain patients with H. cinaedi infection may remain undiagnosed or incorrectly diagnosed because of difficulties in detecting the bacteria by conventional culture methods. Here, we report a nested PCR assay that rapidly detects the cytolethal distending toxin gene (cdt) of H. cinaedi with high specificity and sensitivity. Specificity of the assay was validated by using different species of Helicobacter and Campylobacter, as well as known H. cinaedi-positive and -negative samples. The sensitivity of detection for the cdt gene in the assay was 10 2 CFU/ml urine or 10 2 CFU/10 5 infected RAW 264.7 cells. In an H. cinaedi-infected mouse model, the cdt gene of H. cinaedi was effectively detected via the assay with urine (6/7), stool (2/3), and blood (2/6) samples. Importantly, it detected H. cinaedi in blood, urine, and stool samples from one patient with a suspected H. cinaedi infection and three patients with known infections. The assay was further used clinically to follow up two H. cinaedi-infected patients after antibiotic treatment. Stool samples from these two patients evaluated by nested PCR after antibiotic therapy showed clearance of bacterial DNA. Finally, analysis of stool specimens from healthy volunteers showed occasional positive reactions (4/30) to H. cinaedi DNA, which suggests intestinal colonization by H. cinaedi in healthy subjects. In conclusion, this nested PCR assay may be useful for the rapid diagnosis, antimicrobial treatment evaluation, and epidemiological study of H. cinaedi infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.