NK4 exhibits two distinct biological actions: antagonistic inhibition of hepatocyte growth factor (HGF) through binding to the Met/HGF receptor, and antiangiogenic action through binding to perlecan. Here, the anti-tumor effect of NK4 on malignant pleural mesothelioma was investigated. Of the 7 human malignant mesothelioma cell lines (ACC-Meso-1, ACC-Meso-4, EHMES-1, EHMES-10, H28, H2052 and JMN-1B), only EHMES-10 cells formed subcutaneous tumors when implanted into mice. For EHMES-10 cells, HGF facilitated invasion of the cells in collagen gel, whereas NK4 and neutralizing anti-HGF antibody suppressed the HGF-induced invasion. In addition, NK4 but not anti-HGF antibody suppressed proliferation of EHMES-10 cells in collagen, suggesting that the suppression by NK4 was independent of the HGF-Met pathway. In the subcutaneous tumor model, recombinant adenovirus-mediated intratumoral expression of NK4 inhibited tumor growth, while the invasive characteristic of tumor cells was not observed. Analysis of Met receptor tyrosine phosphorylation, proliferation, apoptosis and blood vessels in the tumor tissues indicated that the inhibitory effect of NK4 expression might be primarily caused by the inhibition of tumor angiogenesis. In all the 7 mesothelioma lines, HGF stimulated Met tyrosine phosphorylation, and this was associated with enhanced cell migration. HGF-dependent Met activation and migration were inhibited by NK4. Since malignant pleural mesothelioma represents an aggressive neoplasm characterized by extensive invasive growth, suppression of invasive growth has therapeutic value. Thus, the simultaneous inhibition of the HGF-Met pathway and angiogenesis by NK4 for treatment of malignant pleural mesothelioma is significant, particularly to attenuate migration and invasive growth.Malignant pleural mesothelioma is a highly invasive and diffuse neoplasm arising from mesothelial-lined surfaces in the pleural cavity. Malignant pleural mesothelioma spreads rapidly along serosal surfaces to involve the pericardium and contralateral hemithorax, and the disease progression is often accompanied by pleural effusion. 1 Exposure to asbestos is causative for the development of malignant pleural mesothelioma, and this disease is expected to increase dramatically over the next few decades. New approaches for its treatment are clearly needed.The inhibition of growth factors and their receptors is a new paradigm of therapy for various types of malignancies. Therefore, elucidation of growth factors that participate in the highly invasive and spreading characteristics of malignant pleural mesothelioma may provide new therapeutic approaches for its treatment. Among growth factors and their receptors, hepatocyte growth factor (HGF), originally identified and cloned as a growth-promoting protein for hepatocytes, 2-4 and its receptor Met have become notable molecular targets of targeted therapy for cancer.HGF is a heterodimeric protein composed of a-and bchains. 3,4 The a-chain of HGF plays a critical role in high
Myotonic dystrophy type 1 (DM1) is an autosomal-dominant multi-system disease caused by expanded CTG repeats in dystrophia myotonica protein kinase (DMPK). The expanded CTG repeats are unstable and can increase the length of the gene with age, which worsens the symptoms. In order to establish a human stem cell system suitable for the investigation of repeat instability, DM1 patient-derived iPSCs were generated and differentiated into three cell types commonly affected in DM1, namely cardiomyocytes, neurons and myocytes. Then we precisely analysed the CTG repeat lengths in these cells. Our DM1-iPSCs showed a gradual lengthening of CTG repeats with unchanged repeat distribution in all cell lines depending on the passage numbers of undifferentiated cells. However, the average CTG repeat length did not change significantly after differentiation into different somatic cell types. We also evaluated the chromatin accessibility in DM1-iPSCs using ATAC-seq. The chromatin status in DM1 cardiomyocytes was closed at the DMPK locus as well as at SIX5 and its promoter region, whereas it was open in control, suggesting that the epigenetic modifications may be related to the CTG repeat expansion in DM1. These findings may help clarify the role of repeat instability in the CTG repeat expansion in DM1.
The aim of the present study was to evaluate the reproducibility of tumor position under patient deep inspiration self-breath-holding in the absence of respiratory monitoring devices, as well as to compare the reproducibility of deep inspiration self-breath-holding on the verbal command of a radiation technologist (Passive mode) with that initiated by patients' own estimation (Active mode). Twenty patients with lung cancer were shown how the tumor and diaphragm move during the respiration cycle. Patients were instructed to hold their breath during deep inspiration and reproduce identical tumor position as well as possible either by the Active mode or by the Passive mode. After patients had practiced self-breath-holding during deep inspiration, a set of three CT scans was obtained for each of the two modes of self-breath-holding (6 CT scans total) to obtain randomly timed images of 2 mm thickness in the vicinity of the tumor. The first three scans were performed during breath-hold using the Active mode, and next three scans were using the Passive mode. Maximum difference in tumor position for the three CT scans was then calculated along three axes: cranial-caudal (C-C); anterior-posterior (A-P); and right-left (R-L). In the 20 patients who underwent analysis of self-breath-holding, mean maximum difference in tumor position obtained under breath-hold using the Active and the Passive modes were: 2.2 and 3.1 mm along the C-C axis; 1.4 and 2.4 mm along the A-P axis; and 1.3 and 2.2 mm along the R-L axis, respectively. These differences in all axes were significantly smaller (p<0.05) for the Active mode than for the Passive mode. Most tumors displayed maximal respiratory movement along the C-C axis, and minimal movement along the R-L axis, but tumors located in the upper lung displayed maximal movement along the A-P axis. Significant correlation (p<0.05) was observed between differences along three axes in either mode of breath-hold. In conclusion, the reproducibility of tumor position under self-breath-holding by patients during deep inspiration after sufficient practice and in the absence of respiratory monitoring devices was satisfactorily accurate, and differences in tumor position were smaller under breath-holding using the Active mode than using the Passive mode. We believe this new technique is likely to prove extremely useful for the irradiation of lung tumors with a small internal margin and for reduced proportion of high-dose irradiated normal lung to total lung volume.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.