Object detection is a fundamental task in computer vision, which is usually based on convolutional neural networks (CNNs). While it is difficult to be deployed in embedded devices due to the huge storage and computing consumptions, binary neural networks (BNNs) can execute object detection with limited resources. However, the extreme quantification in BNN causes diversity of feature representation loss, which eventually influences the object detection performance. In this paper, we propose a method balancing Information Retention and Deviation Control to achieve effective object detection, named IR-DC Net. On the one hand, we introduce the KL-Divergence to compose multiple entropy for maximizing the available information. On the other hand, we design a lightweight convolutional module to generate scale factors dynamically for minimizing the deviation between binary and real convolution. The experiments on PASCAL VOC, COCO2014, KITTI, and VisDrone datasets show that our method improved the accuracy in comparison with previous binary neural networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.