Parsing sketches via semantic segmentation is attractive but challenging, because (i) free-hand drawings are abstract with large variances in depicting objects due to different drawing styles and skills; (ii) distorting lines drawn on the touchpad make sketches more difficult to be recognized; (iii) the high-performance image segmentation via deep learning technologies needs enormous annotated sketch datasets during the training stage.In this paper, we propose a Sketch-target deep FCN Segmentation Network(SFSegNet) for automatic free-hand sketch segmentation, labeling each sketch in a single object with multiple parts. SFSegNet has an end-to-end network process between the input sketches and the segmentation results, composed of 2 parts: (i) a modified deep Fully Convolutional Network(FCN) using a reweighting strategy to ignore background pixels and classify which part each pixel belongs to; (ii) affine transform encoders that attempt to canonicalize the shaking strokes. We train our network with the dataset that consists of 10,000 annotated sketches, to find an extensively applicable model to segment stokes semantically in one ground truth. Extensive experiments are carried out and segmentation results show that our method outperforms other state-of-the-art networks.
With the explosive increase of digital images, intelligent information retrieval systems have become an indispensable tool to facilitate users’ information seeking process. Although various kinds of techniques like keyword-/content-based methods have been extensively investigated, how to effectively retrieve relevant images from a large-scale database remains a very challenging task. Recently, with the wide availability of touch screen devices and their associated human-computer interaction technology, sketch-based image retrieval (SBIR) methods have attracted more and more attention. In contrast to keyword-based methods, SBIR allows users to flexibly manifest their information needs into sketches by drawing abstract outlines of an object/scene. Despite its ease and intuitiveness, it is still a nontrivial task to accurately extract and interpret the semantic information from sketches, largely because of the diverse drawing styles of different users. As a consequence, the performance of existing SBIR systems is still far from being satisfactory. In this paper, we introduce a novel sketch image edge feature extraction algorithm to tackle the challenges. Firstly, we propose a Gaussian blur-based multiscale edge extraction (GBME) algorithm to capture more comprehensive and detailed features by continuously superimposing the edge filtering results after Gaussian blur processing. Secondly, we devise a hybrid barycentric feature descriptor (RSB-HOG) that extracts HOG features by randomly sampling points on the edges of a sketch. In addition, we integrate the directional distribution of the barycenters of all sampling points into the feature descriptor and thus improve its representational capability in capturing the semantic information of contours. To examine the efficiency of our method, we carry out extensive experiments on the public Flickr15K dataset. The experimental results indicate that the proposed method is superior to existing peer SBIR systems in terms of retrieval accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.