Biomacromolecules are likely to undergo self‐assembly and show specific collective behavior concentrated in the medium. Although the assembly procedures have been studied for unraveling their mysteries, there are few cases to directly demonstrate the collective behavior and phase transition process in dynamic systems. In the contribution, the drying process of M13 droplet is investigated, and can be successfully simulated by a doctor blade coating method. The morphologies in the deposited film are measured by atomic force microscopy and the liquid crystal phase development is captured in real time using polarized optical microscope. Collective behaviors near the contact line are characterized by the shape of meniscus curve and particle movement velocity. With considering rheological properties and flow, the resultant chiral film is used to align gold nanorods, and this approach can suggest a way to use M13 bacteriophage as a scaffold for the multi‐functional chiral structures.
The characteristics of vortical structures in T-shaped branches with respect to the shear-thinning effect are numerically investigated using a power-law fluid model. By varying the power-law index n, we observe three different flow structures, namely, steady-, harmonic-, and turbulent-like regimes. The time-averaged and instantaneous vortical structures are examined for different values of the local Reynolds number. In the steady regime, stationary vortical structures form near the corners of the T-shaped branch. As n decreases, the vortical structures oscillate back and forth, giving rise to the harmonic regime. Decreasing n further, we observe the turbulent-like regime. In this regime, the vortical structures are torn off near the tips of the vortices and small-scale structures are vigorously generated, constituting more violent behavior than in the harmonic regime. If the local Reynolds number near the wall and near the cores of the vortical structures reaches a critical value, the flow structure becomes turbulent-like after the bifurcation of the T-shaped branch. In addition, the modal characteristics of the vortical structures are analyzed using dynamic mode decomposition with respect to the degree of shear-thinning. As shear-thinning appears in the flow, various high-frequency modes with small-scale vortical structures are observed, and their energies are evenly distributed. This supports the present observation of the vortical structures depending on shear-thinning and -thickening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.