BackgroundRecently, stem cells derived from inflammatory dental pulp tissues (DPSCs-IPs) have demonstrated regenerative potential, but the real effect remains to be examined. This pilot study attempted to isolate DPSCs-IPs from two patients and to evaluate the feasibility and the effect of reconstructing periodontal intrabone defects in each patient.MethodsDPSCs-IPs were harvested from two patients with periodontal intrabone defects with their approval. After discussing the biological characteristics of DPSCs-IPs in each patient, DPSCs-IPs were loaded onto the scaffold material β-tricalcium phosphate and engrafted into the periodontal defect area in the root furcation. After 1, 3, and 9 months, the outcome was evaluated by clinical assessment and radiological study. Furthermore, new samples were collected and the biological characteristics of DPSCs-IPs were further studied compared with normal dental pulp stem cells. The primary cell culture success rate, cell viability, cell cycle analysis, and proliferation index were used to describe the growth state of DPSCs-IPs. In-vitro differentiation ability detection was used to further discuss the stem cell characteristics of DPSCs-IPs.ResultsAs expected, DPSCs-IPs were able to engraft and had an effect of regeneration of new bones to repair periodontal defects 9 months after surgical reconstruction. Although the success rate of primary cell culture and growth status was slightly inhibited, DPSCs-IPs expressed comparable levels of stem cell markers as well as retaining their multidifferentiation ability.ConclusionsWe developed a standard procedure that is potentially safe and technological for clinical periodontal treatment using human autologous DPSCs-IPs.Trial registrationAccording to the editorial policies, the present study is a purely observational study, so trial registration is not required.
Coptidis Rhizoma binds to the membrane receptors on hPDLSC/CMC, and the active ingredient Berberine (BER) that can be extracted from it may promote the proliferation and osteogenesis of periodontal ligament stem cells (hPDLSC). The membrane receptor that binds with BER on the cell surface of hPDLSC, the mechanism of direct interaction between BER and hPDLSC, and the related signal pathway are not yet clear. In this research, EGFR was screened as the affinity membrane receptor between BER and hPDLSC, through retention on CMC, competition with BER and by using a molecular docking simulation score. At the same time, the MAPK PCR Array was selected to screen the target genes that changed when hPDLSC was simulated by BER. In conclusion, BER may bind to EGFR on the cell membrane of hPDLSC so the intracellular ERK signalling pathways activate, and nuclear-related genes of FOS change, resulting in the effect of osteogenesis on PDLSC.
Background and objective:Oxidative stress has been suggested as an important pathogenic factor contributing to chronic periodontitis with diabetes mellitus (CPDM). Previous studies have revealed the potential therapeutic properties of baicalein (BCI) in oxidative stress-related diseases; however, the antioxidant effects of BCI on therapy for individual with CPDM remain largely unexplored. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in cellular defence against oxidative stress. In this study, we aim to determine whether BCI prevents diabetesrelated periodontal tissue destruction by regulating Nrf2 signaling pathway. Material and methods: Human gingival epithelial cells (hGECs) were challenged with high glucose (HG, 25 mmol/L) and/or lipopolysaccharide (LPS, 20 µg/mL). Reactive oxygen species (ROS) were detected by fluorescence-activated cell sorting. The changes of antioxidant-related genes, including Nrf2, catalase (Cat), glutamatecysteine ligase catalytic subunit (Gclc), superoxide dismutase 1 (Sod1), and superoxide dismutase 2 (Sod2), were quantified by real-time PCR. The localization of phospho-Nrf2 (pNrf2, S40) in the nucleus was detected by immunofluorescence staining and laser scanning confocal microscope (LSCM). PNrf2 and total form of Nrf2 were determined using western blot. The above indicators together with mitochondrial membrane potential (MMP) were further investigated in hGECs pre-treated with different concentrations of BCI (0.01, 0.1, or 0.5 µg/mL) before stimulated with HG plus LPS (GP). Finally, the role of BCI in activating Nrf2 signaling pathway and relieving the alveolar bone absorption was examined in the CPDM model of Sprague Dawley rats.CPDM rats were oral gavaged with BCI (50, 100, or 200 mg/kg daily). The pNrf2 was detected by immunohistochemistry, and the alveolar bone absorption was examined by microcomputed tomography.
Results:Our results showed that ROS were significantly increased in both groups of HG and LPS, with the strongest generation in the GP group. In terms of ROSrelated gene expression, we found that the mRNA levels of Nrf2, Cat, Gclc, Sod1, and Sod2 were significantly decreased in HG and LPS groups. In consistent with the strongest induction of ROS in GP group, the gene expression in GP group was further
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.