Current treatments for chronic diabetic wounds remain unsatisfactory due to the lack of ideal wound dressings that can integrate matching mechanical strength, fast self‐healability, facile dressing change, and multiple therapeutic effects into one system. In this work, benefiting from the catechol groups and therapeutic effect of epigallocatechin‐3‐gallate (EGCG, green tea derivative), a smart hydrogel dressing can be conveniently obtained through copolymerization of the complex formed by EGCG and 3‐acrylamido phenylboronic acid (APBA) (the formation of boronate ester bond) and acrylamide. The resulting hydrogel features adequate mechanical properties, self‐healing capability, and tissue adhesiveness. Otherwise, the substantial release of EGCG can not only realize anti‐oxidation, antibacterial, anti‐inflammatory and proangiogenic effect, and modulation of macrophage polarization to accelerate wound healing, but also facilitate easy dressing change. This advanced hydrogel provides a facile and effective way for diabetic chronic wound management and may be extended for the therapy of other complicated wound healings.
The mechanical stability of proteins has been extensively studied using AFM as a single-molecule force spectroscopy method. While this has led to many important results, these studies have been mainly limited to fast unfolding at a high-force regime due to the rapid mechanical drift in most AFM stretching experiments. Therefore, there is a gap between the knowledge obtained at a high-force regime and the mechanical properties of proteins at a lower force regime which is often more physiologically relevant. Recent studies have demonstrated that this gap can be addressed by stretching single protein molecules using magnetic tweezers, due to the excellent mechanical stability this technology offers. Here we review magnetic tweezers technology and its current application in studies of the force-dependent stability and interactions of proteins.
Flagellin is a potent immunogen that activates the innate immune system via TLR5 and Naip5/6, and generates strong T and B cell responses. The adaptor protein MyD88 is critical for signaling by TLR5, as well as IL-1 and IL-18 receptors, major downstream mediators of the Naip5/6 Nlrc4-inflammasome. Herein we define roles of known flagellin receptors and MyD88 in antibody responses generated towards flagellin. We used mice genetically deficient in flagellin recognition pathways to characterize innate immune components that regulate isotype specific antibody responses. Using purified flagellin from Salmonella, we dissected the contribution of innate flagellin recognition pathways to promote antibody responses towards flagellin and co-administered ovalbumin in C57BL/6 mice. We demonstrate IgG2c responses towards flagellin were TLR5- and inflammasome-dependent; IgG1 was the dominant isotype and partially TLR5- and inflammasome-dependent. Our data indicates a substantial flagellin-specific IgG1 response was induced through a TLR5-, inflammasome-, and MyD88-independent pathway. IgA anti-FliC responses were TLR5- & MyD88-dependent and caspase-1-independent. Unlike C57BL/6 mice, flagellin immunized A/J mice induced co-dominant IgG1 and IgG2a responses. Furthermore, MyD88-independent flagellin-induced antibody responses were even more pronounced in A/J MyD88−/− mice, and IgA anti-FliC responses were suppressed by MyD88. Flagellin also worked as an adjuvant toward co-administered ovalbumin, but it only promoted IgG1 anti-OVA responses. Our results demonstrate that a novel pathway for flagellin recognition contributes to antibody production. Characterization of this pathway will be useful for understanding immunity to flagellin and the rationale design of flagellin-based vaccines.
Prostate cancer (PCa) is one of the major men’s malignancies with high mortality worldwide. Circular RNAs (circRNAs) have been shown to serve as essential regulators in human cancers. CircRNA can exert their functions by cooperating with their host genes. In the present study, microarray analysis revealed an upregulated mRNA in PCa samples. X-linked inhibitor of apoptosis protein (XIAP), a key regulator in the progression of human cancers. Through bioinformatics analysis, we determined that XIAP is a host gene for circRNA0005276. Therefore, this study focused on the interaction between circ0005276 and XIAP as well as their functions in PCa progression. The upregulation of XIAP and circ0005276 was determined in PCa tissues and cell lines. Moreover, we confirmed the positive regulation of circ0005276 on XIAP expression. Functionally, we validated that circ0005276 and XIAP promoted cell proliferation, migration and epithelial–mesenchymal transition. Mechanistically, we verified that circ0005276 interacted with FUS binding protein (FUS) so as to activate the transcription of XIAP. Rescue assays were conducted to determine the crucial role of XIAP in circ0005276 and FUS-mediated PCa cellular processes. Collectively, our study revealed the mechanism and function of circ0005276 and its host gene XIAP in PCa progression.
Curcumin is known to exhibit anticancer effects on various cancers with selective cytotoxicity in tumor cells. In the present study, the effects of curcumin‑induced multiple PCDs on human non‑small cell lung cancer (NSCLC) cells and the potential molecular mechanisms of apoptosis and autophagy triggered by curcumin via the PI3K/Akt/mTOR signaling pathway were explored, further confirmed by co‑culture of curcumin with mTOR blocker rapamycin and PI3K/Akt inhibitor LY294002. The anti‑proliferation effect of different stimulus was measured by MTT assay. Apoptosis was detected by flow cytometry. Autophagy induction was detected by MDC labeling and western blotting of Beclin1, LC3, and p62 expression. The mRNA and protein expression levels of Akt and mTOR were assayed by real‑time fluorescence quantitative (qRT‑PCR) technique and western blotting. Our results showed that curcumin inhibited the viability of A549 cells time‑ and dose‑dependently. In addition, a dosage-dependent A549 cell apoptosis‑induction phenomena was observed by the curcumin intervention. Moreover, obvious autophagy was induced after curcumin‑treatment, characterized by the formation of fluorescent particles [autophagic vesicles (AVs)] and significant increase in ratio of LC3‑Ⅱ/LC3‑Ⅰ and Beclin1 as well as decreased p62 expression. Furthermore, the effect of curcumin on a substantial downregulation of phosphatidylinositol 3‑kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway was observed. It is worth noting that the inhibition of mTOR by rapamycin or of PI3K/Akt by LY294002 augmented curcumin‑induced apoptosis and autophagy, leading to significant inhibition of cell proliferation. From these findings, it can be speculated that curcumin potently inhibit the cell growth of NSCLC A549 cells through inducing both apoptosis and autophagy by inhibition of the PI3K/Akt/mTOR pathway. These results support the potential use of curcumin as a novel candidate in treatment of human lung cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.