Abstract-With small cell networks becoming core parts of the fifth generation (5G) cellular networks, it is an important problem to evaluate the impact of user mobility on 5G small cell networks. However, the tendency and clustering habits in human activities have not been considered in traditional user mobility models. In this paper, human tendency and clustering behaviors are first considered to evaluate the user mobility performance for 5G small cell networks based on individual mobility model (IMM). As key contributions, user pause probability, user arrival and departure probabilities are derived in this paper for evaluating the user mobility performance in a hotspot-type 5G small cell network. Furthermore, coverage probabilities of small cell and macro cell BSs are derived for all users in 5G small cell networks, respectively. Compared with the traditional random waypoint (RWP) model, IMM provides a different viewpoint to investigate the impact of human tendency and clustering behaviors on the performance of 5G small cell networks.Index Terms-User mobility, small cell networks, 5G networks, individual mobility model.
It is a great challenge to evaluate the network performance of cellular
mobile communication systems. In this paper, we propose new spatial spectrum
and energy efficiency models for Poisson-Voronoi tessellation (PVT) random
cellular networks. To evaluate the user access the network, a Markov chain
based wireless channel access model is first proposed for PVT random cellular
networks. On that basis, the outage probability and blocking probability of PVT
random cellular networks are derived, which can be computed numerically.
Furthermore, taking into account the call arrival rate, the path loss exponent
and the base station (BS) density in random cellular networks, spatial spectrum
and energy efficiency models are proposed and analyzed for PVT random cellular
networks. Numerical simulations are conducted to evaluate the network spectrum
and energy efficiency in PVT random cellular networks.Comment: appears in IEEE Transactions on Communications, April, 201
User distribution in ultra-dense networks (UDNs) plays a crucial role in affecting the performance of UDNs due to the essential coupling between the traffic and the service provided by the networks. Existing studies are mostly based on the assumption that users are uniformly distributed in space. The non-uniform user distribution has not been widely considered despite that it is much closer to the real scenario. In this paper, Radiation and Absorbing model (R&A model) is first adopted to analyze the impact of the non-uniformly distributed users on the performance of 5G UDNs. Based on the R&A model and queueing network theory, the stationary user density in each hot area is investigated. Furthermore, the coverage probability, network throughput and energy efficiency are derived based on the proposed theoretical model. Compared with the uniformly distributed assumption, it is shown that non-uniform user distribution has a significant impact on the performance of UDNs.Index Terms-5G networks, radiation and absorbing model, small cell networks, user density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.