Urban air mobility provides an enabling technology towards on-demand and flexible operations for passenger and cargo transportation in metropolitan areas. Electric verticaltakeoff and landing (eVTOL) concept is a potential candidate for urban air mobility platform because of its lower carbon emissions, lower noise generations and potentially lower operational costs. However, such a transportation model is subject to numerous complicated environmental and urban design factors including buildings, dynamic obstacles and micro-weather patterns. In addition, communication, navigation and surveillance quality-ofservice and availability would be affected on the overall system performance and resilience. Some social factors such as privacy, noise and visual pollution should also be considered to provide a seamless integration of the urban air mobility applications into the daily life. This paper describes an integrated RRT* based approach for designing and executing flight trajectories for urban airspace subject to operating constraints, mission constraints, and environmental conditions. The generated path is energyefficient and enables aerial vehicle to perform mid-flight landing for battery changing or emergency situations. Moreover, this paper proposes another approach that allows on-the-fly path replanning under dynamic constraints such as geofences or microweather patterns. As such, the approach also provides a method toward contingency operations such as emergency landing on the fly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.