Existing captioning models often adopt the encoder-decoder architecture, where the decoder uses autoregressive decoding to generate captions, such that each token is generated sequentially given the preceding generated tokens. However, autoregressive decoding results in issues such as sequential error accumulation, slow generation, improper semantics and lack of diversity. Non-autoregressive decoding has been proposed to tackle slow generation for neural machine translation but suffers from multimodality problem due to the indirect modeling of the target distribution. In this paper, we propose masked non-autoregressive decoding to tackle the issues of both autoregressive decoding and non-autoregressive decoding. In masked non-autoregressive decoding, we mask several kinds of ratios of the input sequences during training, and generate captions parallelly in several stages from a totally masked sequence to a totally non-masked sequence in a compositional manner during inference. Experimentally our proposed model can preserve semantic content more effectively and can generate more diverse captions.
Existing methods for image captioning are usually trained by cross entropy loss, which leads to exposure bias and the inconsistency between the optimizing function and evaluation metrics. Recently it has been shown that these two issues can be addressed by incorporating techniques from reinforcement learning, where one of the popular techniques is the advantage actor-critic algorithm that calculates per-token advantage by estimating state value with a parametrized estimator at the cost of introducing estimation bias. In this paper, we estimate state value without using a parametrized value estimator. With the properties of image captioning, namely, the deterministic state transition function and the sparse reward, state value is equivalent to its preceding state-action value, and we reformulate advantage function by simply replacing the former with the latter. Moreover, the reformulated advantage is extended to n-step, which can generally increase the absolute value of the mean of reformulated advantage while lowering variance. Then two kinds of rollout are adopted to estimate state-action value, which we call self-critical n-step training. Empirically we find that our method can obtain better performance compared to the state-of-the-art methods that use the sequence level advantage and parametrized estimator respectively on the widely used MSCOCO benchmark.
Intelligent video coding (IVC), which dates back to the late 1980s with the concept of encoding videos with knowledge and semantics, includes visual content compact representation models and methods enabling structural, detailed descriptions of visual information at different granularity levels (i.e., block, mesh, region, and object) and in different areas. It aims to support and facilitate a wide range of applications, such as visual media coding, content broadcasting, and ubiquitous multimedia computing. We present a high-level overview of the IVC technology from model-based coding (MBC) to learning-based coding (LBC). MBC mainly adopts a manually designed coding scheme to explicitly decompose videos to be coded into blocks or semantic components. Thanks to emerging deep learning technologies such as neural networks and generative models, LBC has become a rising topic in the coding area. In this paper, we first review the classical MBC approaches, followed by the LBC approaches for image and video data. We also discuss and overview our recent attempts at neural coding approaches, which are inspiring for both academic research and industrial implementation. Some critical yet less studied issues are discussed at the end of this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.