We propose a multiscale multilevel Monte Carlo (MsMLMC) method to solve multiscale elliptic PDEs with random coefficients in the multi-query setting. Our method consists of offline and online stages. In the offline stage, we construct a small number of reduced basis functions within each coarse grid block, which can then be used to approximate the multiscale finite element basis functions. In the online stage, we can obtain the multiscale finite element basis very efficiently on a coarse grid by using the pre-computed multiscale basis. The MsMLMC method can be applied to multiscale RPDE starting with a relatively coarse grid, without requiring the coarsest grid to resolve the smallestscale of the solution. We have performed complexity analysis and shown that the MsMLMC offers considerable savings in solving multiscale elliptic PDEs with random coefficients. Moreover, we provide convergence analysis of the proposed method. Numerical results are presented to demonstrate the accuracy and efficiency of the proposed method for several multiscale stochastic problems without scale separation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.