To effectively deliver lutein, hydrothermally prepared tea seed cake protein nanoparticles (TSCPN) were used to fabricate Pickering emulsion, and the bioaccessibility of lutein encapsulated by Pickering emulsion and the conventional emulsion was evaluated in vitro. The results indicated that the average size and absolute value of zeta potential of TSCPN increased along with the increase in the protein concentration, and 2% protein concentration was adopted to prepare TSCPN. With the increase in the concentration of TSCPN, the size of Pickering emulsion decreased from 337.02 μm to 89.36 μm, and when the TSCPN concentration was greater than 0.6%, all emulsions exhibited good stability during the 14 days storage. Combined with the microstructure result, 1.2% TSCPN was used to stabilize Pickering emulsion. With the increase in ionic concentration (0–400 mM), the particle size of the emulsions increased while the absolute value of zeta potential decreased. TSCPN-based Pickering emulsion was superior to the conventional emulsion for both lutein encapsulation (96.6 ± 1.0% vs. 82.1 ± 1.4%) and bioaccessibility (56.0% ± 1.1% vs. 35.2 ± 1.2%). Thus, TSCPN-based Pickering emulsion in this study have the potential as an effective carrier for lutein.
This study aimed to design a Pickering emulsion (PE) stabilized by whey protein isolate nanofibers (WPINs) prepared with subcritical water (SW) to encapsulate and prevent curcumin (Cur) degradation. Cur-loaded WPINs–SW stabilized PE (WPINs–SW–PE) and hydrothermally prepared WPINs stabilized PE (WPINs–H–PE) were characterized using the particle size, zeta potential, Congo Red, CD, and TEM. The results indicated that WPINs–SW–PE and WPINs–H–PE showed regular spherical shapes with average lengths of 26.88 ± 1.11 μm and 175.99 ± 2.31 μm, and zeta potential values were −38.00 ± 1.00 mV and −34.60 ± 2.03 mV, respectively. The encapsulation efficiencies of WPINs–SW–PE and WPINs–H–PE for Cur were 96.72 ± 1.05% and 94.07 ± 2.35%. The bio-accessibility of Cur of WPINs–SW–PE and WPINs–H–PE were 57.52 ± 1.24% and 21.94 ± 2.09%. In addition, WPINs–SW–PE had a better loading effect and antioxidant activities compared with WPINs–H–PE. SW could be a potential processing method to prepare a PE, laying the foundation for the subsequent production of functional foods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.