Strong evidence implicates prefrontal cortex (PFC) as a major source of functional impairment in severe mental illness such as schizophrenia. Numerous schizophrenia studies report deficits in PFC structure, activation, and functional connectivity in patients with chronic illness, suggesting that deficient PFC functional connectivity occurs in this disorder. However, the PFC functional connectivity patterns during illness onset and its longitudinal progression remain uncharacterized. Emerging evidence suggests that early-course schizophrenia involves increased PFC glutamate, which might elevate PFC functional connectivity. To test this hypothesis, we examined 129 non-medicated, human subjects diagnosed with early-course schizophrenia and 106 matched healthy human subjects using both whole-brain data-driven and hypothesis-driven PFC analyses of resting-state fMRI. We identified increased PFC connectivity in earlycourse patients, predictive of symptoms and diagnostic classification, but less evidence for "hypoconnectivity." At the whole-brain level, we observed "hyperconnectivity" around areas centered on the default system, with modest overlap with PFC-specific effects. The PFC hyperconnectivity normalized for a subset of the sample followed longitudinally (n ϭ 25), which also predicted immediate symptom improvement. Biologically informed computational modeling implicates altered overall connection strength in schizophrenia. The initial hyperconnectivity, which may decrease longitudinally, could have prognostic and therapeutic implications.
Although previous studies have reported deficits in the gray matter volume of schizophrenic patients, it remains unclear whether these deficits occur at the onset of the disease, before treatment, and whether they are progressive over the duration of untreated disease. Furthermore, the gray matter volume represents the combinations of cortical thickness and surface area; these features are believed to be influenced by different genetic factors. However, cortical thickness and surface area in antipsychotic-naive first-episode schizophrenic patients have seldom been investigated. Here, the cortical thicknesses and surface areas of 128 antipsychotic-naive first-episode schizophrenic patients were compared with 128 healthy controls. The patients exhibited significantly lower cortical thickness, primarily in the bilateral prefrontal and parietal cortex, and increased thickness in the bilateral anterior temporal lobes, left medial orbitofrontal cortex, and left cuneus. Furthermore, decreased cortical thickness was related to positive schizophrenia symptoms but not to the severity of negative symptoms and the untreated disease duration. No significant difference of surface area was observed between the 2 groups. Thus, without the confounding factors of medication and illness progression, this study provides further evidence to support anatomical deficits in the prefrontal and parietal cortex early in course of the illness. The increased thicknesses of the bilateral anterior temporal lobes may represent a compensatory factor or may be an early-course neuronal pathology caused by preapoptotic osmotic changes or hypertrophy. Furthermore, these anatomical deficits are crucial to the pathogenesis of positive symptoms and relatively stable instead of progressing during the early stages of the disease.
IMPORTANCE Accumulating evidence supports the hypothesis that cerebral white matter abnormalities are involved in the pathophysiology of schizophrenia; however, findings from in vivo neuroimaging studies have been inconsistent. Besides confounding factors, including age, illness duration, and medication effects, an additional cause for the inconsistent results may be heterogeneity in the nature of white matter alterations associated with the disorder.OBJECTIVE To investigate whether different patterns of white matter abnormalities exist in a large cohort of medication-naive patients with first-episode schizophrenia and the relationship between such patterns and clinical parameters. DESIGN, SETTING, AND PARTICIPANTSA cross-sectional diffusion tensor imaging study of 113 medication-naive patients with first-episode schizophrenia and 110 demographically matched healthy control individuals. The study was conducted in the mental health center of West
Purpose To determine whether the brain functional abnormalities of drug-naive first-episode schizophrenia are reduced after 1 year of undergoing antipsychotic treatment and whether pretreatment resting-state functional magnetic resonance (MR) imaging parameters are associated with longitudinal changes in clinical symptoms. Materials and Methods This prospective study was approved by the local ethical committee, and written informed consent was obtained from all participants. Twenty antipsychotic-naive first-episode patients with schizophrenia and 16 healthy individuals were recruited and underwent resting-state functional MR imaging at baseline and again at 1-year follow-up, by which time significant clinical improvement was seen. The amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity (FC) were analyzed with analysis of covariance. Results The amount of ALFF in the right inferior parietal lobule (IPL) and orbitofrontal cortex (OFC) and the amount of FC between the bilateral IPLs significantly increased over the follow-up period, and the amount of ALFF in the right occipital gyrus was reduced (P < .050, AlphaSim corrected [ http://afni.nimh.nih.gov/pub/dist/doc/manual/AlphaSim.pdf ]), returning toward normal levels. Furthermore, the degree of alteration in ALFF values in the right OFC (P = .037) and occipital gyrus (P = .002) at baseline was significantly correlated with the magnitude of the normalization in those regions at 1-year follow-up. In contrast, abnormalities of ALFF in the bilateral thalamus, ventral medial prefrontal cortex, precuneus, and right amygdala and of FC between the right OFC and the dorsal medial prefrontal cortex at baseline did not improve in patients at 1-year follow-up. Conclusion These findings show that some, but not all, neurophysiologic alterations that occur during the acute phase of schizophrenia are normalized in the context of clinical improvement and suggest therapeutic implications for exploration of which alterations in regional and network-level brain function evolve over time in patients with schizophrenia and which reflect persistent pathologic traits. Online supplemental material is available for this article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.