Both all-trans retinoic acid (ATRA) and arsenic trioxide (As2O3) have proven to be very effective in obtaining high clinical complete remission (CR) rates in acute promyelocytic leukemia (APL), but they had not been used jointly in an integrated treatment protocol for remission induction or maintenance among newly diagnosed APL patients. In this study, 61 newly diagnosed APL subjects were randomized into three treatment groups, namely by ATRA, As 2O3, and the combination of the two drugs. CR was determined by hematological analysis, tumor burden was examined with real-time quantitative RT-PCR of the PML-RAR␣ (promyelocytic leukemia-retinoic acid receptor ␣) fusion transcripts, and side effects were evaluated by means of clinical examinations. Mechanisms possibly involved were also investigated with cellular and molecular biology methods. Although CR rates in three groups were all high (>90%), the time to achieve CR differed significantly, with that of the combination group being the shortest one. Earlier recovery of platelet count was also found in this group. The disease burden as reflected by fold change of PML-RAR␣ transcripts at CR decreased more significantly in combined therapy as compared with ATRA or As2O3 mono-therapy (P < 0.01). This difference persisted after consolidation (P < 0.05). Importantly, all 20 cases in the combination group remained in CR whereas 7 of 37 cases treated with mono-therapy relapsed (P < 0.05) after a follow-up of 8 -30 months (median: 18 months). Synergism of ATRA and As2O3 on apoptosis and degradation of PML-RAR␣ oncoprotein might provide a plausible explanation for superior efficacy of combinative therapy in clinic. In conclusion, the ATRA͞As2O3 combination for remission͞ maintenance therapy of APL brings much better results than either of the two drugs used alone in terms of the quality of CR and the status of the disease-free survival.A cute promyelocytic leukemia (APL) accounts for 10-15% of acute myeloid leukemia in which the maturation of granulocytic cells was blocked at the promyelocytic stage. It is also characterized by the t(15;17)(q22;q21) chromosome translocation generating the PML-RAR␣ (promyelocytic leukemia-retinoic acid receptor ␣) fusion gene, of which the leukemogenic role has been demonstrated by the transgenic mouse models (1). Although conventional chemotherapy such as anthracyclines and cytosine arabinoside (ara-C) succeeded in two-thirds of APL patients in obtaining complete remission, high frequency of early death mainly due to exacerbation of bleeding syndrome and low 5-year diseasefree survival (DFS) rates dwarf them to new drugs (2). Our group in the Shanghai Institute of Hematology (SIH) has long been interested in differentiation therapy of human cancers, as inspired by the Chinese philosophy that it is better to transform a bad element instead of simply getting rid of it. After the discovery in the 1970s to early 1980s showing that some leukemic cells could undergo phenotypic reversion under differentiation inducers (3, 4), we started to screen a...
Genomic landscapes of 92 adult and 111 pediatric patients with B-cell acute lymphoblastic leukemia (B-ALL) were investigated using next-generation sequencing and copy number alteration analysis. Recurrent gene mutations and fusions were tested in an additional 87 adult and 93 pediatric patients. Among the 29 newly identified in-frame gene fusions, those involving MEF2D and ZNF384 were clinically relevant and were demonstrated to perturb B-cell differentiation, with EP300-ZNF384 inducing leukemia in mice. Eight gene expression subgroups associated with characteristic genetic abnormalities were identified, including leukemia with MEF2D and ZNF384 fusions in two distinct clusters. In subgroup G4 which was characterized by ERG deletion, DUX4-IGH fusion was detected in most cases. This comprehensive dataset allowed us to compare the features of molecular pathogenesis between adult and pediatric B-ALL and to identify signatures possibly related to the inferior outcome of adults to that of children. We found that, besides the known discrepancies in frequencies of prognostic markers, adult patients had more cooperative mutations and greater enrichment for alterations of epigenetic modifiers and genes linked to B-cell development, suggesting difference in the target cells of transformation between adult and pediatric patients and may explain in part the disparity in their responses to treatment.
BackgroundWhitefly (Bemisia tabaci) causes extensive crop damage throughout the world by feeding directly on plants and by vectoring hundreds of species of begomoviruses. Yet little is understood about its genes involved in development, insecticide resistance, host range plasticity and virus transmission.ResultsTo facilitate research on whitefly, we present a method for de novo assembly of whitefly transcriptome using short read sequencing technology (Illumina). In a single run, we produced more than 43 million sequencing reads. These reads were assembled into 168,900 unique sequences (mean size = 266 bp) which represent more than 10-fold of all the whitefly sequences deposited in the GenBank (as of March 2010). Based on similarity search with known proteins, these analyses identified 27,290 sequences with a cut-off E-value above 10-5. Assembled sequences were annotated with gene descriptions, gene ontology and clusters of orthologous group terms. In addition, we investigated the transcriptome changes during whitefly development using a tag-based digital gene expression (DGE) system. We obtained a sequencing depth of over 2.5 million tags per sample and identified a large number of genes associated with specific developmental stages and insecticide resistance.ConclusionOur data provides the most comprehensive sequence resource available for whitefly study and demonstrates that the Illumina sequencing allows de novo transcriptome assembly and gene expression analysis in a species lacking genome information. We anticipate that next generation sequencing technologies hold great potential for the study of the transcriptome in other non-model organisms.
• Acute myeloid leukemia (AML) patients present an altered glucose metabolism signature.• A panel of 6 metabolite biomarkers involved in glucose metabolism are identified with prognostic value for cytogenetically normal AML.Acute myeloid leukemia (AML) is a group of hematological malignancies with high heterogeneity. There is an increasing need to improve the risk stratification of AML patients, including those with normal cytogenetics, using molecular biomarkers. Here, we report a metabolomics study that identified a distinct glucose metabolism signature with 400 AML patients and 446 healthy controls. The glucose metabolism signature comprises a panel of 6 serum metabolite markers, which demonstrated prognostic value in cytogenetically normal AML patients. We generated a prognosis risk score (PRS) with 6 metabolite markers for each patient using principal component analysis. A low PRS was able to predict patients with poor survival independently of wellestablished markers. We further compared the gene expression patterns of AML blast cells between low and high PRS groups, which correlated well to the metabolic pathways involving the 6 metabolite markers, with enhanced glycolysis and trichloracetic acid cycle at gene expression level in low PRS group. In vitro results demonstrated enhanced glycolysis contributed to decreased sensitivity to antileukemic agent arabinofuranosyl cytidine (Ara-C), whereas inhibition of glycolysis suppressed AML cell proliferation and potentiated cytotoxicity of Ara-C. Our study provides strong evidence for the use of serum metabolites and metabolic pathways as novel prognostic markers and potential therapeutic targets for AML. (Blood. 2014;124(10):1645-1654
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.