Robust detection of infrared slow-moving small targets is crucial in infrared search and tracking (IRST) applications such as infrared guidance and low-altitude security; however, existing methods easily cause missed detection and false alarms when detecting infrared small targets in complex low-altitude scenes. In this article, a new low-altitude slow-moving small target detection algorithm based on spatial-temporal features measure (STFM) is proposed. First, we construct a circular kernel to calculate the local grayscale difference (LGD) in a single image, which is essential to suppress low-frequency background and irregular edges in the spatial domain. Then, a short-term energy aggregation (SEA) mechanism with the accumulation of the moving target energy in multiple successive frames is proposed to enhance the dim target. Next, the spatial-temporal saliency map (STSM) is obtained by integrating the two above operations, and the candidate targets are segmented using an adaptive threshold mechanism from STSM. Finally, a long-term trajectory continuity (LTC) measurement is designed to confirm the real target and further eliminate false alarms. The SEA and LTC modules exploit the local inconsistency and the trajectory continuity of the moving small target in the temporal domain, respectively. Experimental results on six infrared image sequences containing different low-altitude scenes demonstrate the effectiveness of the proposed method, which performs better than the existing state-of-the-art methods.
Robust infrared (IR) small target detection is critical for infrared search and track (IRST) systems and is a challenging task for complicated backgrounds. Current algorithms have poor performance on complex backgrounds, and there is a high false alarm rate or even missed detection. To address this problem, a weighted local coefficient of variation (WLCV) is proposed for IR small target detection. This method consists of three stages. First, the preprocessing stage can enhance the original IR image and extract potential targets. Second, the detection stage consists of a background suppression module (BSM) and a local coefficient of variation (LCV) module. BSM uses a special three-layer window that combines the anisotropy of the target and differences in the grayscale distribution. LCV exploits the discrete statistical properties of the target grayscale. The weighted advantages of the two modules complement each other and greatly improve the effect of small target enhancement and background suppression. Finally, the weighted saliency map is subjected to adaptive threshold segmentation to extract the true target for detection. The experimental results show that the proposed method is more robust to different target sizes and background types than other methods and has a higher detection accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.