61The Tibetan Plateau (TP), known as the "sensible heat pump" and the 62 "atmospheric water tower", modifies monsoon circulations and regional energy and 63 water cycles over Asia (Wu and Zhang 1998; Zhao and Chen 2001a; Wu et al. 2007; 64 Xu et al. 2008b; Zhou et al. 2009). Strong ascent over the TP may transport lower-65 tropospheric water vapor and anthropogenic pollutants into the upper troposphere-66 lower stratosphere (UT-LS), which exerts an influence on the local ozone valley 67 (Zhou et al. 1995; Liu et al. 2003; Bian et al. 2011) and the aerosol-layer 68 enhancements near the tropopause (Tobo et al. 2007; Vernier et al. 2015). The TP also In the 1990s, a longer-term field experiment was conducted over the TP with the 84 support of the Japanese Experiment on Asian Monsoon (JEXAM). It estimated the 2008a; Zhang et al. 2012; Chen et al. 2011 Chen et al. , 2013. It found diurnal variations of et al. 2013; Hu et al. 2014; Zheng et al. 2014 Zheng et al. , 2015a Zheng et al. , b, c, 2016 Guo et al. 2015; 161 Zhuo et al. 2016; Wan et al. 2017). These problems may also cause large uncertainties 162 in reanalysis datasets and satellite products (such as air temperature, soil moisture, 163 surface heat fluxes, and radiation) over the TP (Li et al. 2012; Wang et al. 2012; Zhu 164 et al. 2012; Su et al. 2013; Zeng et al. 2016). 165To promote Tibetan meteorological research, the Third Tibetan Plateau 166Atmospheric Scientific Experiment (TIPEX-III), to continue for eight to ten years, OBJECTIVES. 173The field observational objective of TIPEX-III is to constitute a 3-D observation 174 system of the land surface, PBL, troposphere, and lower stratosphere over the TP. 175This system integrates ground-, air-, and space-based platforms based on the 176 meteorological operational networks, the TIPEX-III network, the existing NIOST (Fig. 1a). Consistent with the operational observations of the 265 CMA, at each site the measurement system measures soil water content ( Fig. 1a). The regional network consists of 33 sites over 270 Naqu (Fig. 1c), which began operating in August 2015, and 17 sites over Shiquanhe This network consists of six additional sites at Bange, Namucuo, Anduo, Nierong, 280Jiali, and Biru, and contributes to integrated research on the high-resolution land-281 surface and PBL processes over the central TP and their effects on mesoscale systems. 282These observations have been conducted at Shiquanhe, Namucuo, Naqu, Anduo, Gongshan (98.67°E, 27.75°N) station on the southeastern slope of the TP (Fig. 1b), a 300 key area for gauging water-vapor transports from the Indian Ocean to East Asia. (Fig. 1b). A primary goal of these observations is to explore the cloud (Fig. 1b). A follow-up field campaign using ground-based radars Tuotuohe, Mangya, Golmud, and Xining meteorological stations (Fig. 1b). Using PRELIMINARY ACHIEVEMENTS OF TIPEX-III. 328The implementation of TIPEX-III has enhanced the monitoring capability for the 380(1) Cloud diurnal variation and warm rain process. 3...
We here report our recent research results on the climatic features of Tibetan thermodynamic functions and their impacts on the regional climates of the Northern Hemisphere. The results show that the thermodynamic processes over the Tibetan Plateau not only strongly influence the Asian monsoon and precipitation, but also modulate the atmospheric circulation and climate over North America and Europe through stimulating the large-scale teleconnections such as the Asian-Pacific oscillation and affect the atmospheric circulation over the southern Indian Ocean. The Tibetan climate may be affected by sea surface temperatures over the tropical Pacific. On the other hand, the Tibetan climate also affects the atmosphere-ocean interactions in the tropics and mid-latitudes of the Pacific by the atmospheric circulation over the North Pacific. In spring and summer, the thermodynamic anomalies on the plateau affect the subtropical high pressure, the Hadley circulation, and the intertropical convergence zone over the Pacific, and then modulate the development of the El Niño/Southern Oscillation (ENSO). It is necessary to study the forecasting methods for the development of ENSO from the Tibetan climate anomaly. This result also embodies the essence of interactions among land, atmosphere, and ocean over the Northern Hemisphere. Since the previous studies focused on impacts of the plateau on climates in the Asian monsoon regions, it is essential to pay more attention to studying the roles of the plateau in the Northern Hemispheric and even global climates. Tibetan thermodynamic process, Asian monsoon, Northern Hemispheric climate, ocean-atmosphere interactionThe Tibetan Plateau (TP) extends for more than 2000 and 1000 km in the east-west and south-north directions, respectively, and its average elevation is near 4000 m above sea level, occupying about one third of the tropospheric depth. Because the heating on the TP directly acts on the atmosphere of the middle troposphere, which produces a strong thermal contrast with its adjacent atmosphere, the Tibetan thermodynamic and mechanical effects on the atmospheric circulation and climate have been receiving great attention from the meteorologists.Early in the 1950s, Flohn [1] studied the relationship of the elevated Tibetan heating with the variations of the large-scale atmospheric circulation systems over East Asia and the onsets of the monsoon over the Indian subcontinent. In the early 1980s, Ye [2] and Ye [3] analyzed the effects of Tibetan thermodynamic and mechanical functions on the climatologically averaged atmospheric circulations. Afterwards, the relationships of the Tibetan summer heat sources with the atmospheric circulations and monsoons were further investigated [4,5] . In the 1990s, the studies on the Tibetan climatology paid much attention to the effects of the seasonal variations of the Tibetan heating on the times and positions of the monsoon onsets [6][7][8] .In the late 1990s, the effects of the interannual variability of the Tibetan heat sources received attent...
The morphological appearance and main ingredients of three Chinese medicines (CMs), P. ginseng, P. quinquefolius, and P. notoginseng of the Panax genus, are similar. However, their pharmacological activities are obviously different. To ensure their safety and efficacy, chemical characteristics of the three CMs were determined using pressurized liquid extraction and HPLC-evaporative light scattering detection. Twelve major saponins, namely notoginsenoside R1, pseudo-ginsenoside F11, ginsenosides Rg1, Re, Rf, Rb1, Rg2, Rc, Rb2, Rb3, Rd, and Rg3 were also quantitatively compared among the three CMs. The contents of total investigated saponins varied considerably, by up to 4-14-fold, between the highest (P. notoginseng, 82.8-136.5 mg/g) and the lowest values (P. ginseng, 10.0-21.1 mg/g). Hierarchical clustering analysis based on the characteristics of 11 investigated saponins (except ginsenoside Rb3) and notoginsenoside R1, pseudo-ginsenoside F11, and the ratio of ginsenoside Rg1/Rb1 and Rg1/Re showed that 56 tested samples were divided into three main clusters in accordance with the three Panax species. Similarity evaluation of chromatograms was also performed using "Similarity Evaluation System for Chromatographic Fingerprint of Traditional Chinese Medicine (Version 2004A)". The results showed that a high degree of similarity existed within individual clusters, but a low degree between the clusters, which could be used for quality control of the three CMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.