All ferromagnetic materials show deterioration of magnetism-related properties such as magnetization and magnetostriction with increasing temperature, as the result of gradual loss of magnetic order with approaching Curie temperature TC. However, technologically, it is highly desired to find a magnetic material that can resist such magnetism deterioration and maintain stable magnetism up to its TC, but this seems against the conventional wisdom about ferromagnetism. Here we show that a Fe–Ga alloy exhibits highly thermal-stable magnetization up to the vicinity of its TC, 880 K. Also, the magnetostriction shows nearly no deterioration over a very wide temperature range. Such unusual behaviour stems from dual-magnetic-phase nature of this alloy, in which a gradual structural-magnetic transformation occurs between two magnetic phases so that the magnetism deterioration is compensated by the growth of the ferromagnetic phase with larger magnetization. Our finding may help to develop highly thermal-stable ferromagnetic and magnetostrictive materials.
Cr and Cr-P coatings were electrodeposited on Fe substrates from non-aqueous deep eutectic solvent-based electrolytes containing Cr(III). The optimized deposition parameters for the coating process were explored. A two-step process of Cr(III) reduction occurred, i.e. Cr(III)→Cr(II)→Cr(0), and the controlling step was promoted by adding NH 4 H 2 PO 2 . It is found that an electro-brush plating Ni underlayer was essential to obtain a smooth and compact Cr or Cr-P coating on the Fe substrate. The structure and composition of the as-deposited coatings were thoroughly analyzed. The corrosion behavior of the Cr and Cr-P coatings is quite different in the 3.5 wt.% NaCl and 0.1 M H 2 SO 4 solutions, respectively.The diplex effects of the layered structures and ion-selective components in the as-preparedCr-based coatings are suggested to be responsible for the different corrosion mechanism in different corrosion medium.
Large and sensitive magnetostriction (large strain induced by small magnetic fields) is highly desired for applications of magnetostrictive materials. However, it is difficult to simultaneously improve magnetostriction and reduce the switching field because magnetostriction and the switching field are both proportional to the magnetocrystalline anisotropy. To solve this fundamental challenge, we report that introducing tetragonal nanoprecipitates into a cubic matrix can facilitate large and sensitive magnetostriction even in random polycrystals. As exhibited in a proof-of-principle reference, Fe–Ga alloys, the figure of merit—defined by the saturation magnetostriction over the magnetocrystalline anisotropy constant—can be enhanced by over 5-fold through optimum aging of the solution-treated precursor. On the one hand, the aging-induced nanodispersive face-centered tetragonal (FCT) precipitates create local tetragonal distortion of the body-centered cubic (BCC) matrix, substantially enhancing the saturation magnetostriction to be comparable to that of single crystal materials. On the other hand, these precipitates randomly couple with the matrix at the nanoscale, resulting in the collapse of net magnetocrystalline anisotropy. Our findings not only provide a simple and feasible approach to enhance the magnetostriction performance of random polycrystalline ferromagnets but also provide important insights toward understanding the mechanism of heterogeneous magnetostriction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.