Impact experiments enable single particle analysis for many applications. However, the effect of the trajectory of a particle to an electrode on impact signals still requires further exploration. Here, we investigate the particle impact measurements versus motion using micromotors with controllable vertical motion. With biocatalytic cascade reactions, the micromotor system utilizes buoyancy as the driving force, thus enabling more regulated interactions with the electrode. With the aid of numerical simulations, the dynamic interactions between the electrode and micromotors are categorized into four representative patterns: approaching, departing, approaching-and-departing, and departing-and-reapproaching, which correspond well with the experimentally observed impact signals. This study offers a possibility of exploring the dynamic interactions between the electrode and particles, shedding light on the design of new electrochemical sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.