High-resolution spectral domain optical coherence tomography (SD-OCT) is a vital clinical technique that suffers from the inherent compromise between transverse resolution and depth of focus (DOF). Meanwhile, speckle noise worsens OCT imaging resolving power and restricts potential resolution-enhancement techniques. Multiple aperture synthetic (MAS) OCT transmits light signals and records sample echoes along a synthetic aperture to extend DOF, acquired by time-encoding or optical path length encoding. In this work, a deep-learning-based multiple aperture synthetic OCT termed MAS-Net OCT, which integrated a speckle-free model based on self-supervised learning, was proposed. MAS-Net was trained on datasets generated by the MAS OCT system. Here we performed experiments on homemade microparticle samples and various biological tissues. Results demonstrated that the proposed MAS-Net OCT could effectively improve the transverse resolution in a large imaging depth as well as reduced most speckle noise.
Placental villi play a vital role in human fetal development, acting as the bridge of material exchange between the maternal and fetal. The abnormal morphology of placental villi is closely related to placental circulation disorder and pregnancy complications. Revealing placental villi three‐dimensional (3D) morphology of common obstetric complications and healthy pregnancies provides a new perspective for studying the role of the placenta and its villi in the development of pregnancy diseases. In this study, we established a noninvasive, high‐resolution 3D imaging platform via optical coherence tomography to reveal placental villi 3D morphological information of diseased and normal placentae. For the first time, 3D morphologies of placental villous tree structures in common obstetric complications were quantitatively revealed and corresponding 3D information could visualize the morphological characteristics of the placental villous tree from a more intuitive perspective, providing helpful information to the study of fetal development, feto‐maternal material exchange, and gestational complications treatment.
Optical coherence tomography (OCT), a promising noninvasive bioimaging technique, can resolve sample three-dimensional microstructures. However, speckle noise imposes obvious limitations on OCT resolving capabilities. Here we proposed a deep-learning-based speckle-modulating OCT based on a hybrid-structure network, residual-dense-block U-Net generative adversarial network (RDBU-Net GAN), and further conducted a comprehensively comparative study to explore multi-type deep-learning architectures’ abilities to extract speckle pattern characteristics and remove speckle, and resolve microstructures. This is the first time that network comparative study has been performed on a customized dataset containing mass more-general speckle patterns obtained from a custom-built speckle-modulating OCT, but not on retinal OCT datasets with limited speckle patterns. Results demonstrated that the proposed RDBU-Net GAN has a more excellent ability to extract speckle pattern characteristics and remove speckle, and resolve microstructures. This work will be useful for future studies on OCT speckle removing and deep-learning-based speckle-modulating OCT.
Optical coherence tomography (OCT), a promising noninvasive bioimaging technique, has become one of the most successful optical technologies implemented in medicine and clinical practice. Here we report a novel technique of depth-resolved transverse-plane motion tracking with configurable measurement features via optical coherence tomography, termed OCT-MT. Based on OCT circular scanning combined with speckle spatial oversampling, the OCT-MT technique can perform depth-resolved transverse-plane motion tracking. Benefitting from the optical interference and depth-resolved feature, the proposed OCT-MT can reduce the requirements on the input power of the irradiation signal and the surface reflectivity and roughness of the target, when performing motion tracking. Furthermore, OCT-MT can conduct such kind of motion tracking with configurable measurement ranges and resolutions by configuring A-line number per scanning circle, circular scanning radius, and A-line scanning time. The proposed OCT-MT technique may expand the ability of motion tracking for OCT in addition to imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.