Bovine submaxillary mucin (BSM) is a gel-forming glycoprotein polymer, and Ser/Thr-linked glycans (O-glycans) are important in regulating BSM’s viscoelasticity and polymerization. However, details of O-glycosylation have not been reported. This study investigates the structural and quantitative characteristics of O-glycans and identifies O-glycosylation sites in BSM using liquid chromatography–tandem mass spectrometry. The O-glycans (consisting of di- to octa-saccharides) and their quantities (%) relative to total O-glycans (100%; 1.1 pmol per 1 μg of BSM) were identified with 14 major (>1.0%), 12 minor (0.1%–1.0%), and eight trace (<0.1%) O-glycans, which were characterized based on their constituents (sialylation (14 O-glycans; 81.9%, sum of relative quantities of each glycan), non-sialylation (20; 18.1%), fucosylation (20; 17.5%), and terminal-galactosylation (6; 3.6%)) and six core structure types [Gal-GalNAc, Gal-(GlcNAc)GalNAc, GlcNAc-GalNAc, GlcNAc-(GlcNAc)GalNAc, and GalNAc-GalNAc]. O-glycosylation sites were identified using O-glycopeptides (bold underlined; 56SGETRTSVI, 259SHSSSGRSRTI, 272GSPSSVSSAEQI, 307RPSYGAL, 625QTLGPL, 728TMTTRTSVVV, and 1080RPEDNTAVA) obtained from proteolytic BSM; these sites are in the four domains of BSM. The gel-forming mucins share common domain structures and glycosylation patterns; these results could provide useful information on mucin-type O-glycans. This is the first study to characterize O-glycans and identify O-glycosylation sites in BSM.
Bovine submaxillary mucin (BSM) is a natural polymer used in biomaterial applications for its viscoelasticity, lubricity, biocompatibility, and biodegradability. N-glycans are important for mucin stability and function, but their structures have not been fully characterized, unlike that of O-glycans. In this study, BSM N-glycans were investigated using liquid chromatography-tandem mass spectrometry. The microheterogeneous structures of 32 N-glycans were identified, and the quantities (%) of each N-glycan relative to total N-glycans (100%) were obtained. The terminal N-acetylgalactosamines in 12 N-glycans (sum of relative quantities; 27.9%) were modified with mono- (10 glycans) and disulfations (2 glycans). Total concentration of all sulfated N-glycans was 6.1 pmol in BSM (20 µg), corresponding to 25.3% of all negatively charged glycans (sum of present N-glycans and reported O-glycans). No N-glycans with sialylated or phosphorylated forms were identified, and sulfate modification ions were the only negative charges in BSM N-glycans. Mucin structures, including sulfated N-glycans located in the hydrophobic terminal regions, were indicated. This is the first study to identify the structures and quantities of 12 sulfated N-glycans in natural mucins. These sulfations play important structural roles in hydration, viscoelasticity control, protection from bacterial sialidases, and polymer stabilization to support the functionality of BSM via electrostatic interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.