The purpose of this research was to investigate the chemical profile, nutritional quality, antioxidant and hypolipidemic effects of Mexican chia seed oil (CSO) in vitro. Chemical characterization of CSO indicated the content of α-linolenic acid (63.64% of total fatty acids) to be the highest, followed by linoleic acid (19.84%), and saturated fatty acid (less than 11%). Trilinolenin content (53.44% of total triacylglycerols (TAGs)) was found to be the highest among seven TAGs in CSO. The antioxidant capacity of CSO, evaluated with ABTS•+ and DPPH• methods, showed mild antioxidant capacity when compared with Tocopherol and Catechin. In addition, CSO was found to lower triglyceride (TG) and low-density lipoprotein-cholesterol (LDL-C) levels by 25.8% and 72.9%respectively in a HepG2 lipid accumulation model. As CSO exhibits these chemical and biological characteristics, it is a potential resource of essential fatty acids for human use.
Dictyophora indusiata polysaccharide (DP1) was successfully chelated with zinc chloride to achieve its enhanced antiproliferative activity. The obtained DP1-Zn complex showed significant antiproliferative activity (18.1 ± 2.84% viability of MCF-7 cells at 250 μg/mL) on a group of human cancer cell lines through induction of apoptosis. The pro-apoptotic action of DP1-Zn was confirmed by morphological changes including chromatin condensation, DNA breakage, and S phase cell cycle arrest in human breast adenocarcinoma cells (MCF-7). The DP1-Zn-induced apoptotic pathways were characterized by the activation of caspases-3, -8, and -9, mitochondrial dysfunction, and reactive oxygen species (ROS) overproduction (305 ± 7.06% production of control at 250 μg/mL). This study suggested that DP1-Zn can be developed as a candidate for cancer treatment and prevention, especially human breast adenocarcinoma.
The walnut peptides and zinc ions were combined to generate a walnut peptides-zinc complex (WP1-Zn) with enhanced antiproliferative ability as well as reduced toxicity. The result indicated that Zn ions were successfully combined with WP1 through Zn-N and Zn-O covalent bonds. WP1-Zn compounds exhibited strong antiproliferative ability against the selected human cell lines, especially MCF-7 cells, whose survival rate reduced to 20.02% after exposure to 300 μg/mL of WP1-Zn for 48 h. WP1-Zn inhibited MCF-7 cell proliferation through inducing cell apoptosis and cell cycle arrest. The results indicated that WP1-Zn induced MCF-7 cell apoptosis via the ROS triggered mitochondrial-mediated pathway and cell surface receptor-mediated pathway. Our work is the first attempt to elucidate the synergic effect of novel walnut peptides and Zn and with the hope of better understanding the antiproliferative action of bioactive peptides and a zinc complex and support the potential application of WP1-Zn as a functional food ingredient or complementary medicine.
to comparison of the ED. The new process showed a very high efficiency in production of DAG with a high purity.The ratio of positional isomers 1,3-DAG to 1,2 -DAG was 2:1 in the final product. The certain plasticity (melting point of 44 °C) and content of unsaturated fatty acids made the product a valuable food ingredient.
AbbreviationsDAG Diacylglycerols FFA Free fatty acids TAG Triacylglycerols ED Esterification degree BCR Bubble column reactor MAG Monoacylglycerols 1 H-NMR 1 H-nuclear magnetic resonance XRD X-ray powder diffraction DSC Differential thermal scanners PLM Polarized light microscopeAbstract In this study, diacylglycerols (DAG) were synthesized rapidly (~30 min) in a solvent-free system via esterification of glycerol with fatty acids (FA, the mixture of 60 wt% palm oil deodorizer distillate and 40 wt% oleic acid) catalyzed by Lipozyme 435 (Novozymes A/S, Copenhagen, Denmark) using a bubble column reactor. The content of DAG, monoacylglycerols (MAG), triacylglycerols (TAG) and free fatty acids (FFA) in the crude product were 57.94 ± 1.60 wt%, 24.68 ± 2.08 wt%, 2.67 ± 1.72 wt% and 14.69 ± 1.22 wt%, respectively under the selected conditions, which were enzyme load of 5.0 wt%, glycerol/FA mole ratio of 7.5, initial water content of 2.5 wt%, reaction temperature of 60 °C, reaction time of 30 min and N 2 gas flow of 10.6 cm min −1 . The final product containing 91.30 ± 1.10 wt% of DAG was obtained by onestep molecular distillation at 200 °C. The reusability of Lipozyme 435 was investigated by evaluating the esterification degree (ED) and the DAG content in the crude products in 30 successive runs. The enzyme retained 95.10 % of its original activity during 30 successive runs according Electronic supplementary material The online version of this article (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.