Schizosaccharomyces pombe contains four putative (1,3)β-D-glucan synthase (GS) catalytic subunits, Bgs1p-4p. In this work, we cloned bgs4+ and show that Bgs4p is the only subunit found to be a part of the GS enzyme and essential for maintaining cell integrity during cytokinesis and polarized growth. Here we show that bgs4+, cwg1+ (cwg1-1 shows reduced cell-wall β-glucan and GS catalytic activity) and orb11+ (orb11-59 is defective in cell morphogenesis) are the same gene. bgs4+ is essential for spore germination and bgs4+ shut-off produces cell lysis at growing poles and mainly at the septum prior to cytokinesis, suggesting that Bgs4p is essential for cell wall growth and to compensate for an excess of cell wall degradation during cytokinesis. Shut-off and overexpression analysis suggest that Bgs4p forms part of a GS catalytic multiprotein complex and that Bgs4p-promoted cell-wall β-glucan alterations induce compensatory mechanisms from other Bgs subunits and (1,3)α-D-glucan synthase. Physiological localization studies showed that Bgs4p localizes to the growing ends, the medial ring and septum, and at each stage of wall synthesis or remodeling that occurs during sexual differentiation: mating, zygote and spore formation, and spore germination. Bgs4p timing and requirements for proper positioning during cytokinesis and its localization pattern during spore maturation differ from those of Bgs1p. Bgs4p localizes overlapping the contractile ring once Bgs1p is present and a Calcofluor white-stained septum material is detected, suggesting that Bgs4p is involved in a late process of secondary or general septum synthesis. Unlike Bgs1p, Bgs4p needs the medial ring but not the septation initiation network proteins to localize with the other septation components. Furthermore, Bgs4p localization depends on the polarity establishment proteins. Finally, F-actin is necessary for Bgs4p delocalization from and relocalization to the growing regions, but it is not needed for the stable maintenance of Bgs4p at the growing sites, poles and septum. All these data show for the first time an essential role for a Bgs subunit in the synthesis of a (1,3)β-D-glucan necessary to preserve cell integrity when cell wall synthesis or repair are needed.
Schizosaccharomyces pombe Bgs1p/Cps1p has been identified as a putative (1,3)β-D-glucan synthase (GS) catalytic subunit with a possible function during cytokinesis and polarized growth. To study this possibility,double mutants of cps1-12 and cdc septation mutants were made. The double mutants displayed several hypersensitive phenotypes and altered actin distribution. Epistasis analysis showed mutations prior to septum synthesis were dominant over cps1-12, while cps1-12was dominant over the end of septation mutant cdc16-116, suggesting Bgs1p is involved in septum cell-wall (1,3)β-D-glucan synthesis at cytokinesis. We have studied the in vivo physiological localization of Bgs1p in a bgs1Δ strain containing a functional GFP-bgs1+ gene (integrated single copy and expressed under its own promoter). During vegetative growth, Bgs1p always localizes to the growing zones: one or both ends during cell growth and contractile ring and septum during cytokinesis. Bgs1p localization in cdc septation mutants indicates that Bgs1p needs the medial ring and septation initiation network (SIN) proteins to localize properly with the rest of septation components. Bgs1p localization in the actin mutant cps8-188 shows it depends on actin localization. In addition, Bgs1p remains polarized in the mislocalized growing poles and septa of tea1-1 and tea2-1mutants. During the meiotic process of the life cycle, Bgs1p localizes to the mating projection, to the cell-to-cell contact zone during cell fusion and to the neck area during zygote formation. Also, Bgs1p localization suggests that it collaborates in forespore and spore wall synthesis. During spore germination, Bgs1p localizes first around the spore during isotropic growth,then to the zone of polarized growth and finally, to the medial ring and septum. At the end of spore-cell division, the Bgs1p displacement to the old end occurs only in the new cell. All these data show that Bgs1p is localized to the areas of polarized cell wall growth and so we propose that it might be involved in synthesizing the lineal (1,3)β-D-glucan of the primary septum, as well as a similar lineal (1,3)β-D-glucan when other processes of cell wall growth or repair are needed.
The Schizosaccharomyces pombe cps1-12 (for chlorpropham supersensitive) mutant strain was originally isolated as hypersensitive to the spindle poison isopropyl N-3-chlorophenyl carbamate (chlorpropham) (J. Ishiguro and Y. Uhara, Jpn. J. Genet. 67:97-109, 1992). We have found that the cps1-12 mutation also confers (i) hypersensitivity to the immunosuppressant cyclosporin A (CsA), (ii) hypersensitivity to the drug papulacandin B, which specifically inhibits 1,3--D-glucan synthesis both in vivo and in vitro, and (iii) thermosensitive growth at 37°C. Under any of these restrictive treatments, cells swell up and finally lyse. With an osmotic stabilizer, cells do not lyse, but at 37°C they become multiseptated and multibranched. The cps1-12 mutant, grown at a restrictive temperature, showed an increase in sensitivity to lysis by enzymatic cell wall degradation, in in vitro 1,3--D-glucan synthase activity (173% in the absence of GTP in the reaction), and in cell wall biosynthesis (130% of the wild-type amount). Addition of Ca 2؉ suppresses hypersensitivity to papulacandin B and septation and branching phenotypes. All of these data suggest a relationship between the cps1 ؉ gene and cell wall synthesis. A DNA fragment containing the cps1 ؉ gene was cloned, and sequence analysis indicated that it encodes a predicted membrane protein of 1,729 amino acids with 15 to 16 transmembrane domains. S. pombe cps1p has overall 55% sequence identity with Fks1p or Fks2p, proposed to be catalytic or associated subunits of Saccharomyces cerevisiae 1,3--D-glucan synthase. Thus, the cps1 ؉ product might be a catalytic or an associated copurifying subunit of the fission yeast 1,3--D-glucan synthase that plays an essential role in cell wall synthesis.
Fission yeast cells identify growing regions at the opposite ends of the cell, producing the rod-like shape. The positioning of the growth zone(s) and the polarized growth require CLIP170-like protein Tip1 and the Ndr kinase Orb6, respectively. Here, we show that the mor2/cps12 mutation disrupts the localization of F-actin at the cell ends, producing spherical cells and concomitantly inducing a G 2 delay at 36°C. Mor2 is important for the localization of F-actin at the cell end(s) but not at the medial region, and is essential for the restriction of the growth zone(s) where Tip1 targets. Mor2 is homologous to the Drosophila Furry protein, which is required to maintain the integrity of cellular extensions, and is localized at both cell ends and the medial region of the cell in an actin-dependent fashion. Cellular localization of Mor2 and Orb6 was interdependent. The tyrosine kinase Wee1 is necessary for the G 2 delay and maintenance of viability of the mor2 mutant. These results indicate that Mor2 plays an essential role in cell morphogenesis in concert with Orb6, and the mutation activates the mechanism coordinating morphogenesis with cell cycle progression.
The fission yeast cps8 mutation gives rise to abnormally enlarged and dispolarized cells, each of which contains several nuclei with aberrant multisepta. Molecular cloning and sequence analysis of the cps8 gene indicated that it encodes an actin with an amino acid substitution of aspartic acid for glycine at residue 273 in the hydrophobic loop that is located between actin subdomains 3 and 4. Fluorescence microscopy using phalloidin and anti-actin antibody revealed changes in the F-actin structure and distribution in the mutant cells. These results indicate that the hydrophobic loop plays an essential role for creating normal F-actin structure, only by which cell polarity and the late mitotic events can be maintained properly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.