Pressure measurement with excellent stability and long time durability is highly desired, especially at high temperature and harsh environments. A polymer-derived silicoboron carbonitride (SiBCN) ceramic pressure sensor with excellent stability, accuracy, and repeatability is designed based on the giant piezoresistivity of SiBCN ceramics. The SiBCN ceramic sensor was packaged in a stainless steel case and tested using half Wheatstone bridge with the uniaxial pressure up to 10 MPa. The SiBCN ceramic showed a remarkable piezoresistive effect with the gauge factor (K) as high as 5500. The output voltage of packed SiBCN ceramic sensor changes monotonically and smoothly versus external pressure. The as received SiBCN pressure sensor possesses features of short response time, excellent repeatability, stability, sensitivity, and accuracy. Taking the excellent high temperature thermo-mechanical properties of polymer-derived SiBCN ceramics (e.g., high temperature stability, oxidation/corrosion resistance) into account, SiBCN ceramic sensor has significant potential for pressure measurement at high temperature and harsh environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.