Real-time and effective human thermal discomfort detection plays a critical role in achieving energy efficient control of human centered intelligent buildings because estimation results can provide effective feedback signals to heating, ventilation and air conditioning (HVAC) systems. How to detect occupant thermal discomfort is a challenge. Unfortunately, contact or semi-contact perception methods are inconvenient in practical application. From the contactless perspective, a kind of vision-based contactless human discomfort pose estimation method was proposed in this paper. Firstly, human pose data were captured from a vision-based sensor, and corresponding human skeleton information was extracted. Five thermal discomfort-related human poses were analyzed, and corresponding algorithms were constructed. To verify the effectiveness of the algorithms, 16 subjects were invited for physiological experiments. The validation results show that the proposed algorithms can recognize the five human poses of thermal discomfort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.