Detecting moving objects from ground-based videos is commonly achieved by using background subtraction techniques. Low-rank matrix decomposition inspires a set of state-ofthe-art approaches for this task. It is integrated with structured sparsity regularization to achieve background subtraction in the developed method of Low-rank and Structured Sparse Decomposition (LSD). However, when this method is applied to satellite videos where spatial resolution is poor and targets contrast to the background is low, its performance is limited as the data no longer fits adequately either the foreground structure or the background model. In this paper, we handle these unexplained data explicitly and address the moving target detection from space as one of the pioneer studies. We propose a new technique by extending the decomposition formulation with bounded errors, named Extended Low-rank and Structured Sparse Decomposition (E-LSD). This formulation integrates lowrank background, structured sparse foreground as well as their residuals in a matrix decomposition problem. To solve this optimization problem is challenging. We provide an effective solution by introducing an alternative treatment and adopting the direct extension of Alternating Direction Method of Multipliers (ADMM). The proposed E-LSD was validated on two satellite videos, and experimental results demonstrate the improvement in background modeling with boosted moving object detection precision over state-of-the-art methods.
Current new developments in remote sensing imagery enable satellites to capture videos from space. These satellite videos record the motion of vehicles over a vast territory, offering significant advantages in traffic monitoring systems over ground-based systems. However, detecting vehicles in satellite videos are challenged by the low spatial resolution and the low contrast in each video frame. The vehicles in these videos are small, and most of them are blurred into their background regions. While region proposals are often generated for efficient target detection, they have limited performance on satellite videos. To meet this challenge, we propose a Local Region Proposing approach (LRP) with three steps in this study. A video frame is segmented into semantic regions first and possible targets are then detected in these coarse scale regions. A discrete Histogram Mixture Model (HistMM) is proposed in the third step to narrow down the region proposals by quantifying their likelihoods towards the target category, where the training is conducted on positive samples only. Experiment results demonstrate that LRP generates region proposals with improved target recall rates. When a slim Fast-RCNN detector is applied, LRP achieves better detection performance over the state-of-the-art approaches tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.