Sampling technique has become one of the recent research focuses in the graph-related fields. Most of the existing graph sampling algorithms tend to sample the high degree or low degree nodes in the complex networks because of the characteristic of scale-free. Scale-free means that degrees of different nodes are subject to a power law distribution. So, there is a significant difference in the degrees between the overall sampling nodes. In this paper, we propose a concept of approximate degree distribution and devise a stratified strategy using it in the complex networks. We also develop two graph sampling algorithms combining the node selection method with the stratified strategy. The experimental results show that our sampling algorithms preserve several properties of different graphs and behave more accurately than other algorithms. Further, we prove the proposed algorithms are superior to the off-the-shelf algorithms in terms of the unbiasedness of the degrees and more efficient than stateof-the-art FFS and ES-i algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.