Background Gastric cancer (GC) is one of the most common carcinomas of the digestive tract, and the prognosis for these patients may be poor. There is evidence that some long non-coding RNAs(lncRNAs) can predict the prognosis of patients with GC. However, few lncRNA signatures have been used to predict prognosis. Herein, we aimed to construct a risk score model based on the expression of five lncRNAs to predict the prognosis of patients with GC and provide new potential therapeutic targets. Methods We performed differentially expressed and survival analyses to identify differentially expressed survival-ralated lncRNAs by using GC patient expression profile data from The Cancer Genome Atlas (TCGA) database. We then established a formula including five lncRNAs to predict the prognosis of patients with GC. In addition, to verify the prognostic value of this risk score model, two independent Gene Expression Omnibus (GEO) datasets, GSE62254 (N = 300) and GSE15459 (N = 200), were employed as validation groups. Results Based on the characteristics of five lncRNAs, patients with GC were divided into high or low risk subgroups. The prognostic value of the risk score model with five lncRNAs was confirmed in both TCGA and the two independent GEO datasets. Furthermore, stratification analysis results showed that this model had an independent prognostic value in patients with stage II–IV GC. We constructed a nomogram model combining clinical factors and the five lncRNAs to increase the accuracy of prognostic prediction. Enrichment analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) suggested that the five lncRNAs are associated with multiple cancer occurrence and progression-related pathways. Conclusion The risk score model including five lncRNAs can predict the prognosis of patients with GC, especially those with stage II-IV, and may provide potential therapeutic targets in future.
As the dominant component of the tumor microenvironment, cancer-associated fibroblasts (CAFs), play a vital role in tumor progression. An increasing number of studies have confirmed that CAFs are involved in almost every aspect of tumors including tumorigenesis, metabolism, invasion, metastasis and drug resistance, and CAFs provide an attractive therapeutic target. This study aimed to explore the feature genes of CAFs for potential therapeutic targets and reliable prediction of prognosis in patients with gastric cancer (GC). Bioinformatic analysis was utilized to identify the feature genes of CAFs in GC by performing an integrated analysis of single-cell and transcriptome RNA sequencing using R software. Based on these feature genes, a CAF-related gene signature was constructed for prognostic prediction by LASSO. Simultaneously, survival analysis and nomogram were performed to validate the prognostic predictive value of this gene signature, and qRT–PCR and immunohistochemical staining verified the expression of the feature genes of CAFs. In addition, small molecular drugs for gene therapy of CAF-related gene signatures in GC patients were identified using the connectivity map (CMAP) database. A combination of nine CAF-related genes was constructed to characterize the prognosis of GC, and the prognostic potential and differential expression of the gene signature were initially validated. Additionally, three small molecular drugs were deduced to have anticancer properties on GC progression. By integrating single-cell and bulk RNA sequencing analyses, a novel gene signature of CAFs was constructed. The results provide a positive impact on future research and clinical studies involving CAFs for GC.
Although many prognostic models have been developed to help determine personalized prognoses and treatments, the predictive efficiency of these prognostic models in hepatocellular carcinoma (HCC), which is a highly heterogeneous malignancy, is less than ideal. Recently, aberrant glycosylation has been demonstrated to universally participate in tumour initiation and progression, suggesting that dysregulation of glycosyltransferases can serve as novel cancer biomarkers. In this study, a total of 568 RNA-sequencing datasets of HCC from the TCGA database and ICGC database were analysed and integrated via bioinformatic methods. LASSO regression analysis was applied to construct a prognostic signature. Kaplan–Meier survival, ROC curve, nomogram, and univariate and multivariate Cox regression analyses were performed to assess the predictive efficiency of the prognostic signature. GSEA and the “CIBERSORT” R package were utilized to further discover the potential biological mechanism of the prognostic signature. Meanwhile, the differential expression of the prognostic signature was verified by western blot, qRT–PCR and immunohistochemical staining derived from the HPA. Ultimately, we constructed a prognostic signature in HCC based on a combination of six glycosyltransferases, whose prognostic value was evaluated and validated successfully in the testing cohort and the validation cohort. The prognostic signature was identified as an independent unfavourable prognostic factor for OS, and a nomogram including the risk score was established and showed the good performance in predicting OS. Further analysis of the underlying mechanism revealed that the prognostic signature may be potentially associated with metabolic disorders and tumour-infiltrating immune cells.
It is well known that many genetic factors are involved in the occurrence and progression of atrioventricular block (AV block) and atrial fibrillation (AF). However, the genetic variants discovered so far have only explained parts of these processes. More genes and variants remain to be identified. In the present study, a three-generation family with an autosomal dominant form of AV block and AF was enrolled. Whole exome sequencing was conducted in three affected and one unaffected family member. A total of 64 nonsynonymous variants was shared by three affected individuals and not present in the unaffected individual. By selection of variants absent in the known databases and were predicted to be deleterious, 4 novel variants were identified. Only one novel frameshift insertion in the LMNA gene (c.825_826insCAGG) was identified in another affected family member and not detected in other non-affected family members and the 100 controls. Our finding expanded the spectrum of variants associated with AV block and AF, and was valuable in the genetic diagnosis of AV block and AF.
Objective: Percutaneous coronary intervention (PCI) via the radial artery access has more advantages than that of femoral artery access, while radial or (and) brachial artery have tendency to be spasmodic. We sought to investigate the effectiveness and safety of guiding catheter crossing over spasmodic radial or (and) brachial artery segments by the aid of PCI wire and balloon compared with traditional anti-spasmodic approach. Methods: The clinical data of 168 patients with coronary artery disease (CAD) (group A), whose PCI was performed via radial artery access with radial or (and) brachial artery spasm or (and) dissection and guiding catheter passing through spasmodic segments successfully by the aid of PCI guiding wire and balloon were analyzed retrospectively, simultaneously, the other 73 patients (group B) who used conventional approach to cross over the spasmodic radial or (and) brachial artery segments were treated as the control. The success rate, the time consumption and the complication were compared between the two groups. Findings: There was no significant difference in the spasmodic site between the two groups (all p value > 0.05
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.