Terrestrial hydrothermal systems have been proposed as alternative birthplaces for early life but lacked reasonable scenarios for the supply of biomolecules. Here, we show that elemental sulfur (S0), as the dominant mineral in terrestrial hot springs, can reduce carbon dioxide (CO2) into formic acid (HCOOH) under ultraviolet (UV) light below 280 nm. The semiconducting S0 is indicated to have a direct bandgap of 4.4 eV. The UV-excited S0 produces photoelectrons with a highly negative potential of −2.34 V (versus NHE, pH 7), which could reduce CO2 after accepting electrons from electron donors such as reducing sulfur species. Simultaneously, UV light breaks sulfur bonds, benefiting the adsorption of charged carbonates onto S0 and assisting their photoreduction. Assuming that terrestrial hot springs covered 1% of primitive Earth’s surface, S0 at 10 μM could have produced maximal 109 kg/year HCOOH within 10-cm-thick photic zones, underlying its remarkable contributions to the accumulation of prebiotic biomolecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.