One way being considered to destroy trinitrotoluene (TNT) land or surf mines is to exploit its reactivity using darts containing chemicals, which, upon contact with TNT, cause instantaneous decomposition, but not detonation. To determine the best candidates to fill the darts, liquids, specifically amines, which react in a hypergolic fashion with TNT were examined for both the rate of reaction and amount of energy released. Micro‐calorimetry was used to measure heat release while spectroscopy and conventional peak intensity monitoring by chromatography were used to examine the rate of reaction. Calorimetry measurements showed little variation between different amines reacting with TNT (about 110–130 kJ mol−1 TNT). TNT reaction with hydride actually produced more heat than with amines. Further, dinitrotoluene (DNT), which generates substantial heat, did not undergo a hypergolic reaction with amines suggesting that heat release is not the controlling factor for the hypergolic reactions. Rate constants, determined for the loss of TNT in dilute acetonitrile solution, clearly showed distinctions among the amines. The more primary amine functionalities in the amine compound, the faster it destroyed TNT. Hydrides or amine mixtures spiked with hydride decomposed substantially faster than the amines alone. However, a direct correlation between reaction rate and time‐to‐ignition was not observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.