Plant height (PH) and ear height (EH) are two very important agronomic traits related to the population density and lodging in maize. In order to better understand of the genetic basis of nature variation in PH and EH, two bi-parental populations and one genome-wide association study (GWAS) population were used to map quantitative trait loci (QTL) for both traits. Phenotypic data analysis revealed a wide normal distribution and high heritability for PH and EH in the three populations, which indicated that maize height is a highly polygenic trait. A total of 21 QTL for PH and EH in three common genomic regions (bin 1.05, 5.04/05, and 6.04/05) were identified by QTL mapping in the two bi-parental populations under multiple environments. Additionally, 41 single nucleotide polymorphisms (SNPs) were identified for PH and EH by GWAS, of which 29 SNPs were located in 19 unique candidate gene regions. Most of the candidate genes were related to plant growth and development. One QTL on Chromosome 1 was further verified in a near-isogenic line (NIL) population, and GWAS identified a C2H2 zinc finger family protein that maybe the candidate gene for this QTL. These results revealed that nature variation of PH and EH are strongly controlled by multiple genes with low effect and facilitated a better understanding of the underlying mechanism of height in maize.
Selenium (Se) is an essential trace element that plays various roles in human health. Understanding the genetic control of Se content and quantitative trait loci (QTL) mapping provide a basis for Se biofortification of wheat to enhance grain Se content. In the present study, a set of recombinant inbred lines (RILs) derived from two Chinese winter wheat varieties (Tai-nong18 and Linmai6) was used to detect QTLs for Se content in hydroponic and field trials. In total, 16 QTLs for six Se content-related traits were detected on eight chromosomes, 1B, 2B, 4B, 5A, 5B, 5D, 6A, and 7D. Of these, seven QTLs were detected at the seedling stage and nine at the adult stage. The contribution of each QTL to Se content ranged from 7.37% to 20.22%. QSsece-7D.2, located between marker loci D-3033829 and D-1668160, had the highest contribution (20.22%). This study helps in understanding the genetic basis for Se contents and will provide a basis for gene mapping of Se content in wheat.
Fusarium ear rot (FER) incited by Fusarium verticillioides is a major disease of maize that reduces grain quality globally. Host resistance is the most suitable strategy for managing the disease. We report the results of genome-wide association study (GWAS) to detect alleles associated with increased resistance to FER in a set of 818 tropical maize inbred lines evaluated in three environments. Association tests performed using 43,424 single-nucleotide polymorphic (SNPs) markers identified 45 SNPs and 15 haplotypes that were significantly associated with FER resistance. Each associated SNP locus had relatively small additive effects on disease resistance and accounted for 1–4% of trait variation. These SNPs and haplotypes were located within or adjacent to 38 candidate genes, 21 of which were candidate genes associated with plant tolerance to stresses, including disease resistance. Linkage mapping in four biparental populations to validate GWAS results identified 15 quantitative trait loci (QTL) associated with F. verticillioides resistance. Integration of GWAS and QTL to the maize physical map showed eight colocated loci on chromosomes 2, 3, 4, 5, 9, and 10. QTL on chromosomes 2 and 9 are new. These results reveal that FER resistance is a complex trait that is conditioned by multiple genes with minor effects. The value of selection on identified markers for improving FER resistance is limited; rather, selection to combine small effect resistance alleles combined with genomic selection for polygenic background for both the target and general adaptation traits might be fruitful for increasing FER resistance in maize.
BackgroundNorthern corn leaf blight (NCLB) caused by Exserohilum turcicum is a destructive disease in maize. Using host resistance to minimize the detrimental effects of NCLB on maize productivity is the most cost-effective and appealing disease management strategy. However, this requires the identification and use of stable resistance genes that are effective across different environments.ResultsWe evaluated a diverse maize population comprised of 999 inbred lines across different environments for resistance to NCLB. To identify genomic regions associated with NCLB resistance in maize, a genome-wide association analysis was conducted using 56,110 single-nucleotide polymorphism markers. Single-marker and haplotype-based associations, as well as Anderson-Darling tests, identified alleles significantly associated with NCLB resistance. The single-marker and haplotype-based association mappings identified twelve and ten loci (genes), respectively, that were significantly associated with resistance to NCLB. Additionally, by dividing the population into three subgroups and performing Anderson-Darling tests, eighty one genes were detected, and twelve of them were related to plant defense. Identical defense genes were identified using the three analyses.ConclusionAn association panel including 999 diverse lines was evaluated for resistance to NCLB in multiple environments, and a large number of resistant lines were identified and can be used as reliable resistance resource in maize breeding program. Genome-wide association study reveals that NCLB resistance is a complex trait which is under the control of many minor genes with relatively low effects. Pyramiding these genes in the same background is likely to result in stable resistance to NCLB.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-015-0589-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.