This paper combines the semantic segmentation of scenes with Simultaneous localization and Mapping (SLAM) technology to build a three-dimensional semantic map. The input sequence is selected by ORB-SLAM for key frame selection, and the scene’s semantic segmentation is performed in the corresponding point cloud data. We use a new 3D segmentation framework, which can effectively simulate the local structure of point cloud. A drift reduction mechanism based on semantic constraints and Bundle Adjustment (BA) constraints was proposed. This mechanism considers the three-dimensional objects, feature points and camera pose for semantic recognition in the scene, and integrates them into the back-end BA to optimize them. The final experimental results show that compared with the current popular ORB-SLAM, this mechanism can reduce the system’s translation drift error by 18.8%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.