Flexible and wearable sensors are of paramount importance in applications like electronic skin, health monitoring, and human–computer interactions. However, mass production of flexible sensors with versatile, high-performance, low-cost, and easy-to-dispose features remains a huge challenge. Herein, based on a strategy of bionics inspired by the slit receptors in arthropods, a flexible paper-based sensor with macrocracks is developed. And a large number of irregular microdomes are formed on the surfaces of folded paper, which attributes to the conductive composites constructed by carbon nanomaterials and poly(dimethylsiloxane) (PDMS). Macrocracks and microdomes are helpful to achieve outstanding dual mechanical strain/pressure signal sensing functions. The materials used and the fabricating method employed are cost-efficient and convenient. As a result, the paper-based sensor exhibits a gauge factor of 64 within the strain range of 1% and excellent stability over 1500 cycles. When serving as a pressure sensor, it shows a high sensitivity of 1.4 kPa–1 in the range within 0.5 kPa. Also, the paper-based sensor shows an environmentally friendly feature and can be almost disposed of naturally, indicating that the bioinspired sensor could serve as disposable green flexible electronics, which has potential usage in wearable applications.
Slit sensillum, a unique sensing organ on the scorpion’s legs, is composed of several cracks with curved shapes. In fact, it is just its particular morphological distribution and structure that endows the scorpions with ultrasensitive sensing capacity. Here, a scorpion-inspired flexible strain sensor with an ordered concentric circular curved crack array (CCA) was designed and fabricated by using an optimized solvent-induced and template transfer combined method. The morphology of the cracks can be effectively controlled by the heating temperature and the lasting time. Instead of the nonuniform stress distribution induced by disordered cracks, ordered concentric circle curved structures are introduced to generate a uniform stress distribution and larger deformation, which can significantly improve the performance of the strain sensor. Thus, the CCA sensor exhibits ultrahigh sensitivity (GF ∼ 7878.6), excellent stability (over 16 000 cycles), and fast response time (110 ms). Furthermore, the CCA sensor was demonstrated to be feasible for monitoring human motions and detecting noncontact vibration signals, indicating its great potential in human-health monitoring and vibration signal detection applications.
Flexible sensors, as a kind of indispensable branch of flexible electronics, are garnering substantial in medical and industrial applications. Ever‐evolving advances in nanowires in their myriad forms have fueled many of the developments in this field. However, recent researches have extensively focused on the intrinsic properties of these nanomaterials, rationally designed structures, which are pivotal in sensing performance, to a large extent, are undervalued. Hereon, the latest advances in the structure design, together with controlled fabrication of nanowires for better sensing performance are highlighted. In specific, nanowires are classified according to morphologies and hybrid forms and their corresponding fabrication methodologies and influence on sensing properties are briefly discussed. Then, construction strategies for nanowire‐based sensors, including materials assembly and macroscopical design are systematically summarized. Subsequently, the characteristics and advantages of flexible sensors induced by various nanowires, including physical/physiological/multifunctional parameters sensing are reflected in the application examples. Finally, conclusions and challenges are presented for the development of nanowire‐based flexible sensors, as well as frontier strategies especially bionic design. This review is aimed at providing a valuable and systematic understanding of nanowires in sensing system and then serves as inspiration for intelligent designs in flexible future electronics.
The high‐performance optimized design of industrial sensor has been a challenging point of breakthrough in high‐end equipment manufacturing technology since its invention. Highly sensitive detectors have emerged during a long evolutionary period and have shown to be essential tools for ensuring species survival and reproduction. As a result, bio‐sensors have served as a great source of inspiration for high‐sensitivity and high‐performance sensor. Mechanism of bio‐sensors in mechanical detection of three common arthropods, as well as the most recent research results in bio‐mimetic devices, have been discussed in this study. The structure of bio‐detectors and bio‐sensors has been creatively split into environmental information capture device and transduction unit from the standpoint of biological sensing mechanisms and engineering technology. And development of bio‐sensors will rely on design and exploitation of mechanical structures and functional materials with various couplings. Exploration of bionic mechanical sensors is in its early stages and further research is required. High‐performance research on biological detectors and multi‐level bionic design on industrial sensors have been enhanced by revealing mechanism of environmental information capture in environment capture device from basic science and synthesizing new multi‐functional materials of transduction unit with a combination of biological materials and production technology.
Flexible strain sensors have received extensive attention due to their broad application prospects. However, a majority of present flexible strain sensors may fail to maintain normal sensing performances upon external loads because of their low strength and thus their performances are affected drastically with increasing loads, which severely restricts large-area popularization and application. Scorpions with hypersensitive vibration slit sensilla are coincident with a similar predicament. Herein, it is revealed that scorpions intelligently use risky slits to detect subtle vibrations, and meanwhile, the distinct layered composites of the main body of this organ prevent catastrophic failure of the sensory structure. Furthermore, the extensive use of flexible sensors will generate a mass of electronic waste just as obsoleting silicon-based devices. Considering mechanical properties and environmental issues, a flexible strain sensor based on an elastomer (Ecoflex)-wrapped fabric with the woven structure was designed and fabricated. Note that introducing a “green” basalt fiber (BF) into a degradable elastomer can effectively avoid environmental issues and significantly enhance the mechanical properties of the sensor. As a result, it shows excellent sensitivity (gauge factor (GF) ∼138.10) and high durability (∼40,000 cycles). Moreover, the reduced graphene oxide (RGO)/BF/Ecoflex flexible strain sensor possesses superior mechanical properties (tensile strength ∼20 MPa) and good flexibility. More significantly, the sensor can maintain normal performances under large external tensions, impact loads, and even underwater environments, providing novel design principles for environmentally friendly flexible sensors under extremely harsh environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.