Background
Cancer as a worldwide problem is driven by genomic alterations. With the advent of high-throughput sequencing technology, a huge amount of genomic data generates at every second which offer many valuable cancer information and meanwhile throw a big challenge to those investigators. As the major characteristic of cancer is heterogeneity and most of alterations are supposed to be useless passenger mutations that make no contribution to the cancer progress. Hence, how to dig out driver genes that have effect on a selective growth advantage in tumor cells from those tremendously and noisily data is still an urgent task.
Results
Considering previous network-based method ignoring some important biological properties of driver genes and the low reliability of gene interactive network, we proposed a random walk method named as Subdyquency that integrates the information of subcellular localization, variation frequency and its interaction with other dysregulated genes to improve the prediction accuracy of driver genes. We applied our model to three different cancers: lung, prostate and breast cancer. The results show our model can not only identify the well-known important driver genes but also prioritize the rare unknown driver genes. Besides, compared with other existing methods, our method can improve the precision, recall and fscore to a higher level for most of cancer types.
Conclusions
The final results imply that driver genes are those prone to have higher variation frequency and impact more dysregulated genes in the common significant compartment.
Availability
The source code can be obtained at
https://github.com/weiba/Subdyquency
.
Electronic supplementary material
The online version of this article (10.1186/s12859-019-2847-9) contains supplementary material, which is available to authorized users.
Essential genes play an indispensable role in supporting the life of an organism. Identification of essential genes helps us to understand the underlying mechanism of cell life. The essential genes of bacteria are potential drug targets of some diseases genes. Recently, several computational methods have been proposed to detect essential genes based on the static protein–protein interactive (PPI) networks. However, these methods have ignored the fact that essential genes play essential roles under certain conditions. In this work, a novel method was proposed for the identification of essential proteins by fusing the dynamic PPI networks of different time points (called by FDP). Firstly, the active PPI networks of each time point were constructed and then they were fused into a final network according to the networks’ similarities. Finally, a novel centrality method was designed to assign each gene in the final network a ranking score, whilst considering its orthologous property and its global and local topological properties in the network. This model was applied on two different yeast data sets. The results showed that the FDP achieved a better performance in essential gene prediction as compared to other existing methods that are based on the static PPI network or that are based on dynamic networks.
BackgroundCancer as a kind of genomic alteration disease each year deprives many people’s life. The biggest challenge to overcome cancer is to identify driver genes that promote the cancer development from a huge amount of passenger mutations that have no effect on the selective growth advantage of cancer. In order to solve those problems, some researchers have started to focus on identification of driver genes by integrating networks with other biological information. However, more efforts should be needed to improve the prediction performance.MethodsConsidering the facts that driver genes have impact on expression of their downstream genes, they likely interact with each other to form functional modules and those modules should tend to be expressed similarly in the same tissue. We proposed a novel model named by DyTidriver to identify driver genes through involving the gene dysregulated expression, tissue-specific expression and variation frequency into the human functional interaction network (e.g. human FIN).ResultsThis method was applied on 974 breast, 316 prostate and 230 lung cancer patients. The consequence shows our method outperformed other five existing methods in terms of Fscore, Precision and Recall values. The enrichment and cociter analysis illustrate DyTidriver can not only identifies the driver genes enriched in some significant pathways but also has the capability to figure out some unknown driver genes.ConclusionThe final results imply that driver genes are those that impact more dysregulated genes and express similarly in the same tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.