The current English teaching mode focuses on the traditional offline teaching and online teaching. In order to solve the problems that some students are inefficient and cannot teach students according to their aptitude in the teaching process, this paper uses the big data analysis strategy based on a neural network algorithm. This paper studies the discrete dynamic modeling method of learner behavior analysis in English teaching. Firstly, it summarizes the current situation of English teaching and the research status of the hybrid application of discrete dynamic modeling technology. Secondly, combined with English teaching content and teaching objectives, through the analysis of various data of students’ learning behavior, this paper evaluates students’ English teaching quality from five aspects that affect the students’ English teaching quality and puts forward a personalized English teaching quality evaluation model based on discrete dynamic modeling technology and learners’ behavior analysis. Finally, through the practical teaching application in a university, the feasibility of the discrete dynamic English teaching model is verified. The results show that compared with the current innovative English teaching methods based on a dynamic iterative decision algorithm, the personalized discrete dynamic English teaching model based on learner behavior analysis significantly improves the quality of English teaching and students’ academic performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.