The NHANES study contains objectively measured physical activity data collected using hip-worn accelerometers from multiple cohorts. However, using the accelerometry data has proven daunting because: 1) currently, there are no agreed upon standard protocols for data storage and analysis; 2) data exhibit heterogeneous patterns of missingness due to varying degrees of adherence to weartime protocols; 3) sampling weights need to be carefully adjusted and accounted for in individual analyses; 4) there is a lack of reproducible software that transforms the data from its published format into analytic form; and 5) the high dimensional nature of accelerometry data complicates analyses. Here, we provide a framework for processing, storing, and analyzing the NHANES accelerometry data for the 2003-2004 and 2005-2006 surveys. We also provide an NHANES data package in R, to help disseminate high quality, processed activity data combined with mortality and demographic information. Thus, we provide the tools to transition from "available data online" to "easily accessible and usable data", which substantially reduces the large upfront costs of initiating studies of association between physical activity and human health outcomes using NHANES. We apply these tools in an analysis showing that accelerometry features have the potential to predict 5-year all cause mortality better than known risk factors such as age, cigarette smoking, and various comorbidities.
Background: With aging, daily physical activity (PA) becomes less frequent and more fragmented. Accumulation patterns of daily PAincluding transitions from active-to-sedentary behaviors-may provide important insights into functional status in older, less active populations. Methods: Participants of the Baltimore Longitudinal Study of Aging (n = 680, 50% male, aged 27-94 years) completed a clinical assessment and wore an Actiheart accelerometer. Transitions between active and sedentary states were modeled as a probability (Active-to-Sedentary Transition Probability [ASTP]) defined as the reciprocal of the average PA bout duration. Cross-sectional associations between ASTP and gait speed (m/s), fatigability (rating-of-perceived-exertion [RPE]), 400 m time (seconds), and expanded short physical performance battery score were modeled using linear and logistic regression, adjusted for chronic conditions. Further analyses explored the utility of ASTP over-andabove total daily PA. Results: In continuous models, each 0.10-unit higher ASTP was associated slower gait (β = −0.06 m/s, SE = 0.01), higher fatigability (β = 0.60 RPE, SE = 0.12), slower 400 m time (β = 16.31 s, SE = 2.70), and lower functioning (β = −0.13 expanded short physical performance battery score, SE = 0.03; p < .001). In categorical analyses, those in the highest tertile of ASTP were >2 times more likely to have high fatigability (rating of perceived exertion ≥10), slow 400 m time (>300 seconds) and reduced functional performance (expanded short physical performance battery score < 3.07) than those in the lowest tertile (p < .01). Further analyses demonstrated ASTP provided additional insight into functional outcomes beyond total daily PA. Conclusion: Fragmented daily PA-as measured by ASTP-is strongly linked with measures of health and functional status and may identify those at risk of high fatigability and reduced functional performance over and above traditional PA metrics.
Advancements in accelerometer analytic and visualization techniques allow researchers to more precisely identify and compare critical periods of physical activity (PA) decline by age across the lifespan, and describe how daily PA patterns may vary across age groups. We used accelerometer data from the 2003–2006 cohorts of the National Health and Nutrition Examination Survey (NHANES) (n = 12,529) to quantify total PA as well as PA by intensity across the lifespan using sex-stratified, age specific percentile curves constructed using generalized additive models. We additionally estimated minute-to-minute diurnal PA using smoothed bivariate surfaces. We found that from childhood to adolescence (ages 6–19) across sex, PA is sharply lower by age partially due to a later initiation of morning PA. Total PA levels, at age 19 are comparable to levels at age 60. Contrary to prior evidence, during young adulthood (ages 20–30) total and light intensity PA increases by age and then stabilizes during midlife (ages 31–59) partially due to an earlier initiation of morning PA. We additionally found that males compared to females have an earlier lowering in PA by age at midlife and lower total PA, higher sedentary behavior, and lower light intensity PA in older adulthood; these trends seem to be driven by lower PA in the afternoon compared to females. Our results suggest a reevaluation of how emerging adulthood may affect PA levels and the importance of considering time of day and sex differences when developing PA interventions.
PurposeSedentary behavior has become a public health pandemic and has been associated with a variety of comorbidities including cardiovascular disease, type 2 diabetes, and some cancers. Previous studies have also shown that excessive amount of sedentary behavior is associated with all-cause mortality. However, no studies investigated whether patterns of sedentary and active time accumulation are associated with mortality independently of total sedentary and total active times. This study addresses this question by i) comparing several analytical ways to quantify patterns of both sedentary and active time accumulation through metrics of fragmentation of objectively-measured physical activity and ii) exploring the association of these metrics with all-cause mortality in a nationally representative US sample of elderly adults.MethodsThe accelerometry data of 3400 participants aged 50 to 84 in the National Health and Nutrition Examination Survey 2003-2006 cohorts were analyzed. Ten fragmentation metrics were calculated to quantify the duration of sedentary and active bouts: average bout duration, Gini index, average hazard, between-state transition probability, and the parameter of power law distribution. The association of these fragmentation metrics with all-cause mortality followed through December 31, 2011 was assessed with survey-weighted Cox proportional hazard models.ResultsIn models adjusted for age, sex, race/ethnicity, education, body mass index, common comorbidities, and total sedentary/active time, four fragmentation metrics were associated with lower mortality risk: average active bout duration (HR=0.72 for 1SD increase, 95% CI = 0.590.88), Gini index for active bouts (HR = 0.75, 95% CI = 0.64-0.86), the parameter of power law distribution for sedentary bouts (HR = 0.75, 95% CI = 0.63-0.90), and sedentary-to-active transition probability (HR = 0.77, 95% CI = 0.61-0.96), and four fragmentation metrics were associated with higher mortality risk: the active-to-sedentary transition probability (HR = 1.40, 95% CI=1.23-1.58), the parameter of power law distribution for active bouts (HR = 1.33, 95% CI = 1.16-1.52), average hazard for durations of active bouts (HR = 1.32, 95% CI = 1.18-1.48), and average sedentary bout duration (HR =1.07, 95% CI = 1.01-1.13). After sensitivity analysis, average sedentary bout duration and sedentary-to-active transition probability became insignificant.ConclusionLonger average duration of active bouts, a lower probability of transitioning from active to sedentary behavior, and a higher normalized variability of active bout durations were strongly negatively associated with all-cause mortality independently of total active time. A larger proportion of longer sedentary bouts were positively associated with all-cause mortality independently of total sedentary time. The results also suggested a nonlinear association of average active bout duration with mortality that corresponded to the largest risk increase in subjects with average active bout duration less than 3 minutes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.