In this study, we propose a consistent and explainable degradation indexing method and a non-destructive-based degradation and creep-life prediction method from extensive destructive test (creep-rupture) data of a nickel-based superalloy (DA-5161 SX), an extreme-environment material. High-temperature components made of nickel-based superalloys that operate in extreme environments (e.g., gas turbine blades) deteriorate over time and shorten the life of the device. To ensure the safety and efficiency of the equipment, it is important to predict the lifetime of high-temperature parts, and a consistent and explanatory degradation index and a reliable predictive model that can predict the degree of degradation and life without destructive testing of high-temperature parts are needed. As the degradation of nickel-based superalloys progresses, degradation indices reflecting the geometrical characteristics are required that focus on the fact that the shape of the gamma-prime phase becomes longer and larger. A representative value of the degradation index was selected through parameter inference based on a Bayesian method, and the high-dimensional degradation index of previous studies was simplified to only one dimension. The robustness of the degradation index quantification model was verified by confirming that the degradation index obtained from 20% of the test images had the lowest change rate of the degradation index obtained from 80% of the training images at 6.9%. The basis for predicting the life of high-temperature parts without destructive testing was established in the degradation index and life prediction model by connecting environmental conditions and degradation indices/the LMP (Larson–Miller parameter) to represent creep life in regression models. Gaussian process regression (GPR) models based on sampling-based Bayesian inference performed well in terms of both RMSE in the degradation index and the LMP prediction model, demonstrating robust behavior in performance variation. This may be used as a key health factor that indicates the soundness of diagnostic solutions in the future, and it is expected to be a foundational technology for decision-making models for maintenance, repair, and disposal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.