Cuticular wax is an essential barrier against biological and abiotic stress and is also an important factor affecting fruit storage quality. This paper investigated the effect of melatonin treatment on cuticular wax and the storage quality of plum fruit at low temperature storage of 4 ± 1 °C. ‘Kongxin’ plum was treated with 150 μmol·L−1 melatonin, dried overnight at room temperature 25 ± 1 °C, and then stored at 4 ± 1 °C for 40 d. The microstructure of the fruit epidermis was examined after 0, 20, and 40 d of storage, and the wax composition and fruit storage quality were measured at 10 d intervals. The results demonstrated that melatonin promoted the disintegration and thickening of rod-shaped waxy crystals of ‘Kongxin’ plum fruit and inhibited the combination of disintegrated wax and inner wax. Melatonin maintained fruit firmness and decreased the correlation between fruit firmness and other storage quality parameters. The correlation between firmness and wax composition was enhanced. Melatonin promoted long-chain alkanes that were positively correlated with firmness and water retention and strengthened the correlation between the length of the alkane chain and storage quality parameters but reduced the difference between alkane isomers and storage quality parameters.
Botryosphaeria dothidea is the source of the deadly kiwifruit disease known as soft rot. In order to explore the role of melatonin in regulating the postharvest quality and disease resistance of kiwifruit at different growth and development stages, in this study, we applied melatonin at different concentrations to kiwifruit at the young fruit, expansion, and late expansion stages to assess its effect on fruit resistance to B. dothidea, minimize soft rot, and maintain postharvest fruit quality. The results showed that melatonin significantly suppressed the mycelial growth of B. dothidea, with 1.0 mmol/L melatonin inhibiting it by up to 50%. However, 0.1–0.3 mmol/L melatonin had the best control over soft rot. Furthermore, spraying MT during kiwifruit growth can successfully increase fruit weight; preserve postharvest fruit firmness; reduce respiration intensity in the early stages of storage; delay the rise in soluble solids, while maintaining a high titratable acid content to ensure suitable solid acid ratio; increase total phenol, flavonoid, chlorophyll, carotenoid, and ascorbic acid contents; and delay the rise in soluble sugar contents in the late stages of storage. These results have a positive effect on maintaining the nutritional composition of kiwifruit. However, the effects on weight loss, dry matter content, and soluble protein content were not significant. In addition, the results of the principal component analysis demonstrated that 0.3 mmol/L MT increased kiwifruit’s resistance to soft rot while preserving postharvest fruit quality.
In the present study, the cuticular wax morphology, composition and the relationship with storage quality in three plum cultivars of Prunus salicina ‘Kongxin’ (KXL), Prunus salicina ‘Fengtang’ (FTL) and Prunus salicina ‘Cuihong’ (CHL) were investigated during storage at room temperature of 25 ± 1 °C. The results illustrated that the highest cuticular wax concentration was discovered in KXL, followed by FTL and the lowest in CHL. The fruit wax composition of the three plum cultivars was similar and principally composed of alkanes, alcohols, fatty acids, ketones, aldehydes, esters, triterpenes and olefins. Alcohols, alkanes and triterpenes were the dominant fruit wax compounds of the three plum cultivars. After storage for 20 d at room temperature, the variation of cuticular wax crystal structure and composition showed significant cultivar-associated differences. The total wax content decreased for FTL and CHL and increased for KXL, and the wax crystal degraded and melted together over time. The higher contents of the main components in the three plum cultivars were nonacosane, 1-triacontanol, 1-heneicosanol, nonacosan-10-one, octacosanal, ursolic aldehyde and oleic acid. Alcohols, triterpenes, fatty acids and aldehydes were most dramatically correlated with the softening of fruit and storage quality, and alkanes, esters and olefins were most significantly correlated with the water loss. Nonacosane and ursolic aldehyde can enhance the water retention of fruit. Overall, this study will provide a theoretical reference for the further precise development of edible plum fruit wax.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.