Synthetic lethality (SL) occurs between two genes when the inactivation of either gene alone has no effect on cell survival but the inactivation of both genes results in cell death. SL-based therapy has become one of the most promising targeted cancer therapies in the last decade as PARP inhibitors achieve great success in the clinic. The key point to exploiting SL-based cancer therapy is the identification of robust SL pairs. Although many wet-lab-based methods have been developed to screen SL pairs, known SL pairs are less than 0.1% of all potential pairs due to large number of human gene combinations. Computational prediction methods complement wet-lab-based methods to effectively reduce the search space of SL pairs. In this paper, we review the recent applications of computational methods and commonly used databases for SL prediction. First, we introduce the concept of SL and its screening methods. Second, various SL-related data resources are summarized. Then, computational methods including statistical-based methods, network-based methods, classical machine learning methods and deep learning methods for SL prediction are summarized. In particular, we elaborate on the negative sampling methods applied in these models. Next, representative tools for SL prediction are introduced. Finally, the challenges and future work for SL prediction are discussed.
In the process of drug discovery, drug-induced liver injury (DILI) is still an active research field and is one of the most common and important issues in toxicity evaluation research. It directly leads to the high wear attrition of the drug. At present, there are a variety of computer algorithms based on molecular representations to predict DILI. It is found that a single molecular representation method is insufficient to complete the task of toxicity prediction, and multiple molecular fingerprint fusion methods have been used as model input. In order to solve the problem of high dimensional and unbalanced DILI prediction data, this paper integrates existing datasets and designs a new algorithm framework, Rotation-Ensemble-GA (R-E-GA). The main idea is to find a feature subset with better predictive performance after rotating the fusion vector of high-dimensional molecular representation in the feature space. Then, an Adaboost-type ensemble learning method is integrated into R-E-GA to improve the prediction accuracy. The experimental results show that the performance of R-E-GA is better than other state-of-art algorithms including ensemble learning-based and graph neural network-based methods. Through five-fold cross-validation, the R-E-GA obtains an ACC of 0.77, an F1 score of 0.769, and an AUC of 0.842.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.