The Joint Probabilistic Data Association algorithm is one of the most widely used Data Association algorithm which can effectively finish multi-target tracking in clutter environment. But it will cause track coalescence phenomenon in parallel neighboring or small-angle crossing scene. For avoiding track coalescence, four modified Joint Probabilistic Data Association algorithms are introduced in this paper. Through Monte Carlo simulations, it is confirmed that these algorithms all can avoid this problem, but the tracking performances of these algorithms are different. So tracking performances of them in tracking precision, computation and anti-jamming ability are compared through simulation test, which can provide the basis for applying these new algorithms in practical.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.